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Topics to be discussed

• The mode conversion problem

• What kind of normal forms?

• Genericity hypothesis (topological and symplectic); classifi-
cation (9 types!): H0,±, H2,h, H2,e, S1,h, S1,e, HP,h, HP,e, SP,h, SP,e

• How to get the normal forms?

• Qualitative description of the solutions

• Global problems
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What is the mode conversion problem?

We consider a system

(?) Ĥ ~U = 0

where Ĥ = (Ĥi,j) is an N × N self-adjoint matrix of (semi-

classical) ΨDO’s of order 0 on Rd. The unknown ~U is a map

from Rd into CN .
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The principal symbol Hclass of Ĥ is called the dispersion matrix.

It is a map from the phase space Z = T ?Rd into the Hermitian

N ×N matrices.

The (singular) hypersurface D = p−1(0) where p is the determi-

nant of Hclass is called the dispersion relation

The kernel Lz of Hclass(z) is called the polarisation at z . It is a

(singular) bundle. It plays a basic role for WKB solutions:

Ĥ
(

~a(x)eiS(x)/h
)
= Hclass(x, S′(x))

(
~a(x)

)
eiS(x)/h + O(h)

The Hamilton-Jacobi equation is p(x, S′(x)) = 0.
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We want to describe the (micro)local behaviour of the solutions
of (?) using the usual tools: microsupport, Lagrangian states,
coherent states, semi-classical measures ...

The situation is well understood near the points where the po-
larisation bundle is of dimension 1. We have the following re-
duction tool: let us assume that dimPz0 = l. There exists an
unitary ΨDO gauge transform A so that

A?ĤA =

(
K̂ 0
0 Ê

)
where K̂ is an l × l system and Ê is invertible.

In particular if dimPz0 = 1, we get a scalar equation and the
usual tools apply: WKB solutions....

We want also to describe the global behaviour: EBK quantiza-
tion, trace formulae, ....
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Mode conversion in physics?

• Propagation of electromagnetic waves in generic media (Maxwell
equations, Fresnel sufaces)

• Propagation of acoustic waves in generic media

• Plasma phycics

• Oceanographic waves

• Molecular phycics: Born-Oppenheimer approximation

• Adiabatic Quantum systems (avoided crossings, ...)
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Some previous works

Landau, Zener (1932), Flynn-Littlejohn (1992), Braam-Duistermaat

(1993), Hagedorn, Hagedorn-Joye (1994-...), Emmrich-Weinstein

(1996), Faure-Zhylinskii (2000-...) Fermanian-Kammerer, P.

Gérard, Lasser (2002-..), Tracy-Kaufman (2003), ...
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Qualitative propagation

Let us assume that we are in the generic situation: the dispersion

relation D = p−1(0) splits into 2 parts: the smooth part where

the polarization is a fiber bundle of rank 1 and the singular part

Σ where the polarization is of rank > 1.

Let us give a Lagrangian manifold Λ ⊂ D\Σ, we can associate to

it the usual WKB-Maslov states where the amplitude belongs to

the polarization bundle. This Λ is invariant by the characteristic

flow of p and in general its flow-out will cross Σ.

The main question is: “ What happens there to our solution? “
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Σ

D

Λ
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Ways to solve the MC problem:

• To find some Ansatz’s. We can use the WKB Ansatz outside
Σ and linearize the problem near Σ in order to get an ap-
proximate solution in some domain which will be smaller as
h → 0. This works (Hagedorn) but need some rather difficult
analysis with whole pages of terms to estimate!

• The normal form method: here we use much more geometry:
using FIO’s, we get a (micro)local normal form for which the
solutions are easy to compute. We then use families of states
(WKB, coherent, ..) whose behaviour w.r. to FIO’s is well
understood (symbolic calculus)

In the scalar case both methods work as well. It is no more the
case in the matrix case.
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Normal forms

Everything is (micro-)local near a point z0 in the phase space

with dimPz0 = 2.

We are allowed to use 3 kinds of transformations in order to

reduce to a normal form:

1. Reduction to a 2× 2 system

2. Scalar FIO’s Uχ associated to a canonical transformation χ

3. ΨDO gauge transform Â whose principal symbol is a map

Aclass : T ?Rd → GL(N, C)
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We get something like:

Â?
(
U?

χĤi,jUχ

)
Â = Ĥnormal .

At the level of principal symbols, it gives:

(Aclass)
?(Hclass ◦ χ)Aclass = (Hnormal)class

And on the level of the dispersion relation:

a2.p ◦ χ = p0

where we see only the ideals generated by p and p0.

13



The genericity hypothesis I: topological hypothesis

• Real symmetric case:

let WR
2 = {A ∈ Sym(RN)|dimker A = 2}, we ask that z →

Hclass(z) is transversal to W2. Then Σ = A−1
class(W2) is a

codimension 3 submanifold of T ?Rd (Wigner-von Neumann)

• Complex Hermitian case:

let WC
2 = {A ∈ Herm(CN)|dimker A = 2}, we ask that z →

Hclass(z) is transversal to W2. Then Σ = A−1
class(W2) is a

codimension 4 submanifold of T ?Rd
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L
A Moebius band

Real symmetric case

circle
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The genericity hypothesis II: symplectic hypothesis

They depend only on p; on Σ, we have p = 0 and dp = 0, so
that it makes sense to take the linear part of Xp on Σ; we will
denote it by M .

A. Complex Hermitian case

• H0: Σ is symplectic. It implies that the eigenvalues of M are
±λ, ± iω with λ > 0, ω > 0.

• H2: the corank of the restriction of the symplectic form ω to
Σ is 2 and M admits one pair of nonzero eigenvalues: this
case splits into the elliptic case H2,e and the hyperbolic case
H2,h. Born-Oppenheimer Hclass = h(x, ξ)Id+V (x) gives H2,h
in the generic case.
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Analytical form

Let us assume that we have already a 2× 2 system.

Hclass =

(
p1 + p2 p3 + ip4
p3 − ip4 p1 − p2

)
,

we define:

ωi,j = dpj(Xi) = {pi, pj} ,

Π = ω1,2ω3,4 − ω1,3ω2,4 + ω1,4ω2,3

(Π is the Pfaffian of the antisymmetric matrix (ωi,j)) and

δ =
1

8
Tr(M2) = ω2

1,2 + ω2
1,3 + ω2

1,4 − ω2
2,3 − ω2

2,4 − ω2
3,4 .
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We get the following classification:

–The H0 case corresponds to Π(z0) 6= 0. The ratio

K :=
ω2 − λ2

λω
,

which is a function of z′ ∈ Σ, called the Ray Helicity by Tracy

and Kaufman, is given by

K(z′) = −
δ

|Π|
(z′) .

Chirality: there are in fact 2 non equivalent cases depending on

the sign of Π(z0), the H0,+ and the H0,− cases.
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–The H2,h case corresponds to the vanishing of Π on Σ near z0
and δ(z0) > 0

–The H2,e corresponds to the vanishing of Π on Σ near z0 and

δ(z0) < 0.
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B. Real valued symmetric case

We assume that ω|Σ has maximal corank (= 1) and that M

admits one pair of nonzero eigenvalues: this case splits into the

elliptic case S1,e and the hyperbolic case S1,h
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C. Systems with parameters

We assume that d = 1 for simplicity. We have a system Ĥε~U = 0

where ε is an external parameter. We assume the transversality

hypothesis for the mapping (z, ε) → Hclass and we assume that

z → pε=0(z) admits a ND critical point at the point z0. We have

again the elliptic and the hyperbolic cases:

HP,h, HP,e, SP,h, SP,e
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Normal forms I: Birkhoff type normal forms for the dispersion

relation

In this step, we find χ: it is a normal form problem for a (non

generic) scalar Hamiltonian; we use Birkhoff normal form and

Sternberg theorem: for example, in the H0 case, we get

p ◦ χ = F (x1ξ1, x2
2 + ξ22, z′)

which by Taylor formula can be rewrited as:

p ◦ χ = a2
(
x1ξ1 − b(x2

2 + ξ22, z′)
)
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Normal forms II: From the dispersion relation to the system

We will use the following result: Let H : R4
X ×RN

λ → Herm(2) be

a smooth map such that

det(H(X, λ)) = X1X2 − (X2
3 + X2

4) .

There exist uniquely defined ε = ±1, α = ±1 and a smooth germ

of map J : R4 × RN → GL(2, C) such that

J?H(X, λ)J =

(
αX1 X3 + iεX4

X3 − iεX4 αX2

)

This Lemma is proved using Morse lemma and Moser’s path

method.

23



Normal forms III: semi-classics

We will need to solve the following homological equation which

is the linearization of:

(Aclass)
?(Hclass ◦ χ)Aclass = (Hnormal)class ,

namely:

{S, Hn}+ B?Hn + HnB = R

where R and Hn = (Hnormal)class are given and S, B are unknown.

This equation can be solved for free if the hypothesis on Hclass

are structurally stable.
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Normal form for the H0 case

Ĥ =

(
ξ̂1 B̂a

a?B̂? x1

)
+ R

where

• B̂ is an elliptic ΨDO whose total symbol is > 0 and depends

only on x2
2 + ξ22 and z′

• a = ̂x2 ± iξ2

• The full symbol of R is flat on x2 = ξ2 = 0
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Normal form for the S1,h case

(
ξ̂1 x2 + ihγ̂(h, ξ2, z′)

x2 − ihγ̂(h, ξ2, z′) x1

)
~U = 0
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Normal form for the HP,e case(
ah(ε) x1 + iξ̂1

x1 − iξ̂1 bh(ε)

)
~U = 0
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The propagation of states in the S1,h case

We start with the simplified normal form:{
h
i

∂u
∂x1

+x2v = 0

x2u +x1v = 0

We can easily compute all microlocal solutions. For example

solutions supported in {x1 ≥ 0} are given by

~U = ϕh(x2, x′)~U0

where

ϕh(x2, x′) = v̂(ξ1 = 1, x2, x′)

with where v̂ is h-Fourier transform of v w.r. to x1.
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WKB

Gaussian coherent state

singular WKB

1

ξ1

1

 x
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and ~U0 is given by:

• x1 > 0: u(x1, x2) = −i
√

2π
h Y (x1)x2

(
Γ(1 + i

x2
2
h )
)−1

e
x22
h (i log

x1
h −

π
2)

v(x1, x2) = −x2
x1

u(x1, x2)

• ξ1 > 0:

 û(ξ1, x2) = −x2
ξ1

e−
i
hx2

2 log ξ1

v̂(ξ1, x2) = e−
i
hx2

2 log ξ1
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• ξ1 < 0:  û(ξ1, x2) = x2
|ξ1|

e−
π
hx2

2e−
i
hx2

2 log |ξ1|

v̂(ξ1, x2) = e−
π
hx2

2e−
i
hx2

2 log |ξ1|



Semi-classical states

• WKB-Maslov states associated to a Lagrangian manifold.

Typical form:

a(x)eiS(x)/h

• Coherent states also called symplectic spinors associated to

an isotropic submanifold. Typical example:

a(x, y/
√

h)

with a(x, Y ) in the Schwartz space S w.r. to Y

• Gaussian coherent states. As before, but a(x, Y ) is Gaussian

w.r. to Y (associated to a complex Lagrangian maifold)
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ΣGaussian coherent state

Gaussian coherent state

Non Gaussian coherent spate
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The propagation of states in the HP,e case

t

E

a=0
b=0
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Other singularities can occur:

• Non constant corank of ωΣ

• Defect of transversality (Σ is singular)

• Bifurcation from the elliptic to the hyperbolic case

• Tripple crossings

It could be interesting to compute the codimensions of these

singularities which appear in a stable way if d is bigg enough.

34



Global problems I: problems in dynamical systems

the dispersion relation is in general an highly non generic Hamilton-

Jacobi equation. It would be interesting to know more about the

global dynamics of trajectories going near Σ (closed trajectories,

...)
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Global problems II: EBK quantization

As suggested by Emmrich-Weinstein, we are interested to de-

scribe EBK rules for multicomponent systems. We have to look

first for a notion of Quantum Integrability. I suggest the fol-

lowing one (I will restrict myself to 2 degrees of freedom for

simplicity): let

Ĥ = (Ĥi,j)

be an N ×N Hermitian matrix of ΨDO on R2. We will say that

Ĥ is (quantum) integrable if there exists K̂ another Hermitian

matrix of ΨDO such that:

(?) [Ĥ, K̂] = 0 .

We add as in the scalar case some genericity assumptions for

the principal symbols.
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Let us assume that we are in some domain of the phase space

where the eigenvalue λ(x, ξ) of the principal symbol Hclass is of

multiplicity one.

Then because [Hclass, Kclass] = 0, the polarisation bundle L =

ker(Hclass − λ) is preserved by Kclass. Let us assume that Kclass

acts on L by multiplication by µ(x, ξ). Then it is easy to see

from (?) that the Poisson bracket {λ, µ} vanishes. Hence we get

a scalar integrable system.
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Let us fix an invariant Lagrangian manifold Λ of this system. Us-

ing both transport equations for a WKB eigenfunction ~a(x)exp(iS(x)/h)

where ~a(x) ∈ L(x,S′(x)), we get a connection on the restriction

of L to Λ. From (?) again we see that this connection is flat.

Hence everything reduces to usual BS rules.

Along Σ, both sytems of tori degenerate and we have an inter-

esting bifurcation of EBK rules which could be solved using the

tools already developped by Parisse-YC and by San Vũ Ngo.c.
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A typical example is the following normal form which we have

seen before:

Ĥ =

(
ξ̂1 A
A? x1

)
with

K̂ =

(
AA? 0
0 A?A

)
This example could be a normal form for the integrable case.

It is the case if we restrict to Taylor expansions to order ≤ 2.
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1 2 1 2

Mode conversion in the integrable case

Σ

D

2 copies of R
3
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• Thanks to everybody for coming to this seminar

• Thanks for comments and further discussions
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