Logo

Mathematical Sciences Research Institute

Home > Scientific > Past

Past Scientific Events

  1. Seminar RAS - Social Event

    Updated on Nov 13, 2020 05:10 PM PST
  2. Seminar DDC - Social Event

    Updated on Nov 13, 2020 05:06 PM PST
  3. Seminar RAS - Social Event

    Updated on Nov 13, 2020 05:05 PM PST
  4. Seminar DDC - Social Event

    Updated on Oct 28, 2020 02:50 PM PDT
  5. Seminar RAS - Social Event

    Updated on Oct 28, 2020 02:09 PM PDT
  6. Seminar RAS - PA Seminar

    Updated on Oct 06, 2020 08:52 AM PDT
  7. Workshop 2020 SACNAS – The National Diversity in STEM Conference

    The largest multidisciplinary and multicultural STEM diversity event in the country, the SACNAS conference serves to equip, empower, and energize participants for their academic and professional paths in STEM.

    For more information, click HERE.

    Updated on Nov 23, 2020 09:36 AM PST
  8. Seminar DDC - Social Event

    Updated on Oct 09, 2020 03:43 PM PDT
  9. Seminar RAS - Social Event

    Updated on Oct 09, 2020 01:42 PM PDT
  10. Seminar RAS - PA Seminar

    Updated on Oct 06, 2020 08:52 AM PDT
  11. Seminar DDC - Five Minute Talks

    Updated on Aug 26, 2020 03:14 PM PDT
  12. Seminar DDC - Five Minute Talks

    Updated on Aug 26, 2020 03:10 PM PDT
  13. Seminar DDC - Five Minute Talks

    Updated on Aug 26, 2020 03:15 PM PDT
  14. Seminar DDC - Five Minute Talks

    Updated on Aug 26, 2020 03:09 PM PDT
  15. Workshop Random and Arithmetic Structures in Topology: Introductory Workshop

    Organizers: Martin Bridgeman (Boston College), Richard Canary (University of Michigan), Michelle Chu (University of Illinois at Chicago), Tommaso Cremaschi (University of Southern California), James Farre (Yale University), David Fisher (Indiana University)

    This Introductory workshop will take place virtually, over the course of three weeks.  There will be two mini-courses and two talks by MSRI Postdoctoral Fellows each week.

    Created on Aug 14, 2020 01:46 PM PDT
  16. Seminar RAS Five Minute Talks

    Updated on Aug 21, 2020 11:16 AM PDT
  17. Seminar RAS Five Minute Talks

    Updated on Aug 21, 2020 11:18 AM PDT
  18. Seminar Tea for RAS members

    Updated on Aug 12, 2020 04:33 PM PDT
  19. Seminar Tea for DDC Members

    Updated on Aug 12, 2020 04:43 PM PDT
  20. Seminar RAS Five Minute Talks

    Updated on Aug 21, 2020 11:10 AM PDT
  21. Seminar RAS Five Minute Talks

    Updated on Aug 21, 2020 11:14 AM PDT
  22. Seminar Tea for RAS Members

    Updated on Aug 12, 2020 04:33 PM PDT
  23. Workshop Mathematical Models for Prediction and Control of Epidemics (Virtual Workshop)

    Organizers: Christian Borgs (University of California, Berkeley), Abba Gumel (Arizona State University), Maya Petersen (University of California, Berkeley), Amin Saberi (Stanford University), Katherine Yelick (University of California, Berkeley; Lawrence Berkeley Laboratory)
    Coronavirusagain 14 5 2020 image2lr
    Model of SARS-COV-2 with antibodies [Visual Science]

    The workshop will bring together researchers from epidemiology, global health, and mathematics to discuss challenges in developing predictive models for epidemics as well as policies and algorithmic solutions for their control and mitigation. It will thus give the mathematical community access to some of the challenging issues and mathematical problems in the field.

    Updated on Aug 13, 2020 07:50 AM PDT
  24. Summer Graduate School Introduction to water waves [Virtual Summer Graduate School]

    Organizers: Mihaela Ifrim (University of Wisconsin-Madison), Daniel Tataru (University of California, Berkeley)
    Img 6168
    Overturning wave, artistic drawing by E. Ifrim

    Due to the COVID-19 pandemic, this summer school will be held online.

    The purpose of this two weeks school is to introduce graduate students to the state of the art methods and results in the study of incompressible Euler’s equations in general, and water waves in particular. This is a research area which is highly relevant to many real life problems, and in which substantial progress has been made in the last decade.

     

    The goal is to present the main current research directions in water waves. We will begin with the physical derivation of the equations, and present some of the analytic tools needed in study. The final goal will be two-fold, namely (i) to understand the local solvability of the Cauchy problem for water waves, as well as (ii) to describe the long time behavior of solutions.

    Through the lectures and associated problem sessions, students will learn about a number of new analysis tools which are not routinely taught in a graduate school curriculum. The goal is to help students acquire the knowledge needed in order to start research in water waves and Euler equations.

    Updated on Jul 27, 2020 08:40 AM PDT
  25. Summer Graduate School Séminaire de Mathématiques Supérieures 2020: Discrete Probability, Physics and Algorithms (Montréal, Canada) [Virtual Summer Graduate School]

    Organizers: Gerard Ben Arous (New York University, Courant Institute), LEAD Alexander Fribergh (University of Montreal), Lea Popovic (Concordia University)
    Image

    Due to the COVID-19 pandemic, this summer school will be held online.

    Probability theory, statistics as well as mathematical physics have increasingly been used in computer science. The goal of this school is to provide a unique opportunity for graduate students and young researchers to developed multi-disciplinary skills in a rapidly evolving area of mathematics.

    The topics would include spin glasses, constraint satisfiability, randomized algorithms, Monte-Carlo Markov chains and high-dimensional statistics, sparse and random graphs, computational complexity, estimation and approximation algorithms. Those topics will fall into two main categories, on the one hand problems related to spin glasses and on the other hand random algorithms.

    The part of the summer school dedicated to spin glasses will be split into three parts: an introductory course about traditional spin glasses followed by two more advanced courses where spin glasses meet computer science in addition to a talk on dynamics of spin glasses. The part of the summer school on random algorithms will consist of an introductory course on phase transitions in large random structures, followed by advanced courses on theoretical bounds for computational complexity in reconstruction and inference, and on understanding rare events in random graphs and models of statistical mechanics.

    The two introductory courses on spin glasses and on random algorithms will be accompanied by three exercises sessions of one hour. A one hour exercises session will follow each of the three sessions of a course for both the introductory course on spin glasses and the introductory course on random algorithms. Exercises sessions will be led by an assistant, but will primarily focus on participation of the students.

    Updated on May 26, 2020 12:21 PM PDT
  26. African Diaspora Joint Mathematics 2020 African Diaspora Joint Mathematics Workshop

    The African Diaspora Joint Mathematics Workshop (ADJOINT) will take place at the Mathematical Sciences Research Institute in Berkeley, CA from June 15 to June 26, 2020.

    ADJOINT is a two-week summer activity designed for researchers with a Ph.D. degree in the mathematical sciences who are interested in conducting research in a collegial environment.  

    The main objective of ADJOINT is to provide opportunities for in-person research collaboration to U.S. mathematicians, especially those from the African Diaspora, who will work in small groups with research leaders on various research projects. 

    Through this effort, MSRI aims to establish and promote research communities that will foster and strengthen research productivity and career development among its participants. The ADJOINT workshops are designed to catalyze research collaborations, provide support for conferences to increase the visibility of the researchers, and to develop a sense of community among the mathematicians who attend. 

    The end goal of this program is to enhance the mathematical sciences and its community by positively affecting the research and careers of African-American mathematicians and supporting their efforts to achieve full access and engagement in the broader research community. 

    During the workshop, each participant will: 

    • conduct research at MSRI within a group of four to five mathematicians under the direction of one of the research leaders 
    • participate in professional enhancement activities provided by the onsite ADJOINT Director 
    • receive funding for two weeks of lodging, meals and incidentals, and one round-trip travel to Berkeley, CA 

    After the two-week workshop, each participant will:

    • have the opportunity to further their research project with the team members including the research leader 
    • have access to funding to attend conference(s) or to meet with other team members to pursue the research project, or to present results 
    • become part of a network of research and career mentors

    Updated on Jun 04, 2020 12:01 PM PDT
  27. MSRI-UP MSRI-UP 2020: Branched Covers of Curves

    Organizers: Federico Ardila (San Francisco State University), LEAD Duane Cooper (Morehouse College), Maria Franco (Queensborough Community College (CUNY); MSRI - Mathematical Sciences Research Institute), Rebecca Garcia (Sam Houston State University), Edray Goins (Pomona College), Suzanne Weekes (Worcester Polytechnic Institute)

    The MSRI-UP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.

    In 2020, MSRI-Up will focus on Branched Covers of Curves. The research program will be led by Dr. Edray Goins, Professor of Mathematics at Pomona College.

    Updated on Jul 22, 2020 03:11 PM PDT
  28. Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools

    Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)

    Due to the COVID-19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.

    On May 22 portions of the Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools workshop will be streamed online via Zoom.

    Friday 5/22: 12pm PST (3pm eastern time)

    12:00 - 1:00
    Rico Gutstein, Preparing Students Today for Whatever Tomorrow Brings

    Updated on May 28, 2020 08:56 AM PDT
  29. Seminar Fellowship of the Ring, National Seminar: Commutative Algebra with S_n-invariant monomial ideals

    To attend this seminar, you must register in advance, by clicking HERE.

    Consider a polynomial ring in n variables, together with the action of the symmetric group by coordinate permutations. In my talk I will describe many familiar notions in Commutative Algebra in the context of monomial ideals that are preserved by the action of the symmetric group. These include Castelnuovo-Mumford regularity, projective dimension, saturation, symbolic powers, or the Cohen-Macaulay property. My goal is to explain how changing focus from minimal resolutions to Ext modules can lead to a simplified picture of the homological algebra, and to provide concrete combinatorial recipes to determine the relevant homological invariants.

    Updated on May 01, 2020 12:25 PM PDT
  30. Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools

    Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)

    Due to the COVID-19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.

    On May 15 portions of the Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools workshop will be streamed online via Zoom.

    Friday 5/15: 12pm PST (3pm eastern time)

    12:00 - 1:00
    Dan Reinholz, Preparing teachers to notice, name, and disrupt racial and gender inequity

    Updated on May 28, 2020 08:53 AM PDT
  31. Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools

    Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)

    Due to the COVID-19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.

    Friday 5/8: 12pm PST (3pm eastern time)

    12:00 - 1:00
    Nathan Alexander, Mathematical Models in the Sociological Imagination
    Lincoln Chandler, Pursuing Racial Equity within Schools 

    Updated on May 12, 2020 08:42 AM PDT
  32. Workshop [Moved Online] Hot Topics: Optimal transport and applications to machine learning and statistics

    Organizers: Luigi Ambrosio (Scuola Normale Superiore), Francis Bach (École Normale Supérieure; Institut National de Recherche en Informatique Automatique (INRIA)), LEAD Katy Craig (University of California, Santa Barbara), Carola-Bibiane Schönlieb (University of Cambridge), Stefano Soatto (University of California, Los Angeles)
    Image
    Image drawn by Dr. Katy Craig

    This workshop will be held online.  The link to join is: https://msri.zoom.us/j/92457794010. You must register for the workshop to receive the password.  The workshop is held in Pacific Standard Time.

    Workshop Description:
    The goal of the workshop is to explore the many emerging connections between the theory of Optimal Transport and models and algorithms currently used in the Machine Learning community. In particular, the use of Wasserstein metrics and the relation between discrete models and their continuous counterparts will be presented and discussed.

    Updated on Jul 13, 2020 01:43 AM PDT
  33. Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools

    Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)

    Due to the COVID-19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.

    Friday 5/01: 12pm PST (3pm eastern time)

    12:00 - 1:00 Hyman Bass, 'Mathematics and Social Justice': An undergraduate course. What could this be?

    Updated on May 12, 2020 08:41 AM PDT
  34. Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools

    Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)

    Due to the COVID-19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.

    Friday 4/24: 12pm PST (3pm eastern time)

    12:00 - 1:00 Padmanabhan Seshaiyer, K-12 to Post-Secondary Viewpoint Critical Issues in Mathematics Education

    Updated on May 12, 2020 08:41 AM PDT
  35. Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools

    Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)

    Due to the COVID-19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.

    Friday 4/17: 12pm PST (3pm eastern time)

    12:00 - 1:00 Some unintended consequences of active learning

    Sage Forbes-Gray, Sunset Park High School,  Brooklyn, NY, Mfa Master Teacher 
    Sharon Collins - New Heights Academy Charter School, NYC, MfA Master Teacher; 
    Kate Belin - Fannie Lou High School, NYC, MfA Master Teacher; 

    Moderator: Courtney Ginsberg, MfA
    Host: Katherine Stevenson, CSUN

    Updated on May 12, 2020 08:41 AM PDT
  36. Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools

    Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)

    Due to the COVID-19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.

    Friday 4/10: 12pm PST (3pm eastern time)

    12:00 - 1:00 Estrella Johnson, Some unintended consequences of active learning

    Updated on May 12, 2020 08:40 AM PDT
  37. Workshop {Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools

    Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)

    Due to the COVID-19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.

    Friday 3/27: Starting at 12pm PST (3pm eastern time)

    12:00p - 1:00p
    Nicol Turner Lee, Brookings Inst., Center for Tech Innov. -  Unconscious Bias
    Saber Khan, Processing Foundation, leader of #EthicalCS -  Identity & Ethics

    Updated on May 12, 2020 08:40 AM PDT
  38. Workshop [Moved Online] (∞, n)-categories, factorization homology, and algebraic K-theory

    Organizers: LEAD Clark Barwick (University of Edinburgh), David Gepner (University of Melbourne), David Nadler (University of California, Berkeley), Marcy Robertson (University of Melbourne)
    Image

    The link to this online workshop is: https://msri.zoom.us/j/999860976

    This workshop will focus on recent developments in factorization homology, parametrized homotopy theory, and algebraic K-theory.  These seemingly disparate topics are unified by a common methodology, which leverages universal properties and unforeseen descent by way of higher category theory. Furthermore, they enjoy powerful and complementary roles in application to the cyclotomic trace.  This workshop will be a venue for experts in these areas to present new results, make substantive connections across fields, and suggest and contextualize outstanding questions and problems.  It will consist of 4 two-part lecture series and 10 one-hour talks. The lecture series will be given by Thomas Nikolaus, Akhil Mathew, David Ben-Zvi and a split Martina Rovelli and Viktoriya Ozornova.

     


    Updated on Apr 27, 2020 09:41 AM PDT
  39. Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools

    Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)

    Due to the COVID-19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.

    Friday 3/20: Starting at 12pm PST (3pm eastern time)

    12:00p - 12:45p Lisa Goldberg, Hot Hands: What Data Science Can (and Can't) Tell Us About Basketball Trends
    12:45p - 1:00p Discussion with Lisa and Kate on:  What Bayes tells us about our ability to reason about randomness

    Updated on May 12, 2020 08:37 AM PDT
  40. Workshop [Moved Online] Tensor categories and topological quantum field theories

    Organizers: Scott Morrison (Australian National University), Eric Rowell (Texas A & M University), LEAD Claudia Scheimbauer (TU München), Christopher Schommer-Pries (University of Notre Dame)
    Image
    Topological field theory studies the interplay of algebraic and topological structure (image credit Kevin Walker)

    Link to stream workshop: https://msri.zoom.us/j/226801541

    ***Due to the COVID-19 virus outbreak, the 2020 Tensor categories and topological quantum field theories workshop will no longer be held onsite at MSRI, rather it will take place online from March 16-20 as scheduled***

    The decision to move this workshop online is based on the available scientific data on COVID-19, and the strong advice from experts to avoid gatherings of large groups.

     

    A formal Notice of Change letter is available here, which can be shared with your institution, funding agency, and others.

     


    Updated on Mar 13, 2020 04:52 PM PDT
  41. Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools

    Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)

    Due to the COVID-19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.

    On March 12 and March 13, portions of the Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools workshop will be streamed online via Zoom. Only the talks below will are scheduled at this time.  Further talks may be scheduled at a later date, and you will be notified when we know more.

    Please see the schedule below, as well as links to the two sessions.
     

    Thursday 3/12: Starting at 9am PST (noon eastern time)
    9:00 - 9:10 Welcoming remarks
    9:10 - 9:15 Introduction to CIME 2020 plan and speaker David Daley
    9:15 - 9:55 David Daley, Why Your Vote Doesn't Count
    9:55 - 10:00 Kate Stevenson, introduction of activity
    10:00-10:30 Mathical Book Prize Announcement

    Friday 3/13: Starting at 9am PST (noon eastern time)
    9:00 - 9:05 Introduction of speaker Wesley Pegden
    9:05 - 9:45 Wesley Pegden, Bringing Mathematics to the Courtroom
    9:45 - 10:00 Q&A
     

    A formal Notice of Change letter is available here, which can be shared with your institution, funding agency, and others.

    Updated on May 28, 2020 08:57 AM PDT
  42. Seminar 5-Minute Talks

    Updated on Feb 12, 2020 03:40 PM PST
  43. Seminar 5-Minute Talks

    Updated on Feb 12, 2020 03:41 PM PST
  44. Seminar 5-Minute Talks

    Updated on Feb 12, 2020 03:39 PM PST
  45. Seminar 5-Minute Talks

    Updated on Feb 12, 2020 03:39 PM PST
  46. Seminar Problem Session

    Created on Feb 13, 2020 09:36 AM PST
  47. Workshop Introductory Workshop: Higher Categories and Categorification

    Organizers: LEAD David Ayala (Montana State University), Emily Riehl (Johns Hopkins University), Christopher Schommer-Pries (University of Notre Dame), Peter Teichner (Max-Planck-Institut für Mathematik)
    Image
    relations among 2-morphisms in the 2-dimensional unoriented bordism bicategory

    This workshop will survey notable developments and applications of higher category theory; it will be a venue for end-users to share their vision of how to apply the theory, as well as developers to share technical advancements.  It will consist of 6 series of 3 lectures, each given by instrumental end-users & developers of higher category theory, together with a few question-answer sessions.  Each lecture series will be tailored to a diverse audience, accessible to graduate students and non-expert researchers with some background in homological also algebra.  The content of these lecture series will concern the following topics.

    • K-theory: categorification, non-commutative motives, trace methods; 
    • TQFT: functorial field theories, factorization homology.
    • Parametrized higher category theory: stratifications, equivariant homotopy theory, operads, deformation theory and Koszul duality. 
    • Synthetic higher category theory: model-independent characterizations, cosmoi.  

    Updated on Feb 13, 2020 11:18 AM PST
  48. Workshop Connections for Women: Higher Categories and Categorification

    Organizers: Emily Riehl (Johns Hopkins University), LEAD Marcy Robertson (University of Melbourne)
    Picture of graph%281%29
    Picture of a Feynman graph.

    This two-day workshop will survey notable developments in the foundations and applications of higher category theory. It will consist of two mini-courses given by emerging female leaders in the subject: Claudia Scheimbauer and Nathalie Wahl.  This will be paired with a problem sessions lead by selected "TA's", themselves experts in higher structures.  Each lecture series will be tailored to a diverse audience, accessible to graduate students and non-expert researchers with some background in homological algebra.  

    The majority of the speakers and panelists for this event will be women and gender minorities, and members of these groups and of other underrepresented groups are especially encouraged to attend. This workshop is open to all mathematicians.

    Updated on Feb 07, 2020 11:01 AM PST
  49. Workshop Introductory Workshop: Quantum Symmetries

    Organizers: Vaughan Jones (Vanderbilt University), Victor Ostrik (University of Oregon), Emily Peters (Loyola University), LEAD Noah Snyder (Indiana University)
    Jellyfish
    Jellyfish floating to the surface, as in the evaluation algorithm for certain planar algebras.

    This workshop will consist of introductory minicourses on key topics in Quantum Symmetry: fusion categories, modular tensor categories, Hopf algebras, subfactors and planar algebras, topological field theories, conformal nets, and topological phases of matter.  These minicourses will be introductory and are aimed at giving semester participants exposure to the main ideas of subfields other than their own.

    Updated on Jan 30, 2020 10:47 AM PST
  50. Workshop Connections for Women: Quantum Symmetries

    Organizers: Emily Peters (Loyola University), LEAD Chelsea Walton (University of Illinois at Urbana-Champaign)
    Cfw image
    Photo by drmakete lab on Unsplash

    This workshop will feature several talks by experts, along with numerous 5-minute presentations by junior mathematicians, on topics related to Quantum Symmetry. Such topics will include tensor categories, subfactors, Hopf algebras, topological quantum field theory and more. There will also be a panel discussion on professional development. The majority of the speakers and panelists for this event will be women and gender minorities, and members of these groups and of other underrepresented groups are especially encouraged to attend. This workshop is open to all mathematicians.

    Updated on Jan 30, 2020 10:47 AM PST
  51. Program Quantum Symmetries

    Organizers: Vaughan Jones (Vanderbilt University), LEAD Scott Morrison (Australian National University), Victor Ostrik (University of Oregon), Emily Peters (Loyola University), Eric Rowell (Texas A & M University), LEAD Noah Snyder (Indiana University), Chelsea Walton (University of Illinois at Urbana-Champaign)
    Program picture
    The study of tensor categories involves the interplay of representation theory, combinatorics, number theory, and low dimensional topology (from a string diagram calculation, describing the 3-dimensional bordism 2-category [arXiv:1411.0945]).

    Symmetry, as formalized by group theory, is ubiquitous across mathematics and science. Classical examples include point groups in crystallography, Noether's theorem relating differentiable symmetries and conserved quantities, and the classification of fundamental particles according to irreducible representations of the Poincaré group and the internal symmetry groups of the standard model. However, in some quantum settings, the notion of a group is no longer enough to capture all symmetries. Important motivating examples include Galois-like symmetries of von Neumann algebras, anyonic particles in condensed matter physics, and deformations of universal enveloping algebras. The language of tensor categories provides a unified framework to discuss these notions of quantum symmetry.

    Updated on Jan 14, 2020 02:21 PM PST
  52. Program Higher Categories and Categorification

    Organizers: David Ayala (Montana State University), Clark Barwick (University of Edinburgh), David Nadler (University of California, Berkeley), LEAD Emily Riehl (Johns Hopkins University), Marcy Robertson (University of Melbourne), Peter Teichner (Max-Planck-Institut für Mathematik), Dominic Verity (Macquarie University)
    Higher adjunction axiom
    swallowtail identity

    Though many of the ideas in higher category theory find their origins in homotopy theory — for instance as expressed by Grothendieck’s “homotopy hypothesis” — the subject today interacts with a broad spectrum of areas of mathematical research. Unforeseen descent, or local-to-global formulas, for familiar objects can be articulated in terms of higher invertible morphisms. Compatible associative deformations of a sequence of maps of spaces, or derived schemes, can putatively be represented by higher categories, as Koszul duality for E_n-algebras suggests. Higher categories offer unforeseen characterizing universal properties for familiar constructions such as K-theory. Manifold theory is natively connected to higher category theory and adjunction data, a connection that is most famously articulated by the recently proven Cobordism Hypothesis.
    In parallel, the idea of "categorification'' is playing an increasing role in algebraic geometry, representation theory, mathematical physics, and manifold theory, and higher categorical structures also appear in the very foundations of mathematics in the form of univalent foundations and homotopy type theory. A central mission of this semester will be to mitigate the exorbitantly high "cost of admission'' for mathematicians in other areas of research who aim to apply higher categorical technology and to create opportunities for potent collaborations between mathematicians from these different fields and experts from within higher category theory.

    Updated on Jan 10, 2020 03:55 PM PST
  53. Seminar HDMP-Lunch Q&A session

    Created on Oct 04, 2019 10:50 AM PDT
  54. Workshop Symposium in Honor of Julia Robinson’s 100th Birthday

    Organizers: Hélène Barcelo (MSRI - Mathematical Sciences Research Institute), Thomas Scanlon (University of California, Berkeley), Carol Wood (Wesleyan University)

    MSRI will host a Symposium on the occasion of Julia Robinson’s 100th birthday on Monday, December 9, 2019 at MSRI. Julia Robinson (1919-1985) was an internationally renowned logician of the twentieth century. She was a trailblazer in mathematics as well as in many other ways: she was the first woman president of the American Mathematical Society, and the first woman mathematician elected to membership in the National Academy of Sciences.

    Participating speakers in this day-long celebration of her work and of current mathematics insprired by her research include: Martin Davis, Kirsten Eisentrager, Yuri Matiyasevich, and  Lou van den Dries. Following the symposium, Lenore Blum will give a public lecture at UC Berkeley.

    Updated on Nov 22, 2019 03:54 PM PST
  55. Seminar HDMP-Lunch Q&A session

    Created on Oct 04, 2019 10:50 AM PDT
  56. Workshop Holomorphic Differentials in Mathematics and Physics

    Organizers: LEAD Jayadev Athreya (University of Washington), Steven Bradlow (University of Illinois at Urbana-Champaign), Sergei Gukov (California Institute of Technology), Andrew Neitzke (Yale University), Laura Schaposnik (University of Illinois at Chicago), Gabriela Weitze-Schmithuesen (Universität des Saarlandes), Anton Zorich (Institut de Mathematiques de Jussieu)
    Sn image
    An example of a spectral network associated to the group SL(4).

    Holomorphic differentials on Riemann surfaces have long held a distinguished place in low dimensional geometry, dynamics and representation theory. Recently it has become apparent that they constitute a common feature of several other highly active areas of current research in mathematics and also at the interface with physics. In some cases the areas themselves (such as stability conditions on Fukaya-type categories, links to quantum integrable systems, or the physically derived construction of so-called spectral networks) are new, while in others the novelty lies more in the role of the holomorphic differentials (for example in the study of billiards in polygons, special - Hitchin or higher Teichmuller - components of representation varieties, asymptotic properties of Higgs bundle moduli spaces, or in new interactions with algebraic geometry).

    It is remarkable how widely scattered are the motivating questions in these areas, and how diverse are the backgrounds of the researchers pursuing them. Bringing together experts in this wide variety of fields to explore common interests and discover unexpected connections is the main goal of our program. Our workshop will be of interest to those working in many different fields, including low-dimensional dynamical systems (via the connection to billiards); differential geometry (Higgs bundles and related moduli spaces); and different types of theoretical physics (electron transport and supersymmetric quantum field theory).

    Updated on Nov 21, 2019 10:44 AM PST
  57. Seminar HDMP-Lunch Q&A session

    Updated on Nov 11, 2019 01:54 PM PST
  58. Seminar HDMP-Lunch Q&A session

    Created on Oct 04, 2019 10:50 AM PDT
  59. Workshop Modern Math Workshop 2019

    Organizers: Sudipta Dasmohapatra (Duke University ), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Michael Singer (North Carolina State University), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))
    Mmw2016

    As part of the Mathematical Sciences Collaborative Diversity Initiatives, six mathematics institutes are pleased to host their annual SACNAS pre-conference event, the 2019 Modern Math Workshop (MMW). The Modern Math Workshop is intended to encourage minority undergraduates to pursue careers in the mathematical sciences and to assist undergraduates, graduate students and recent PhDs in building their research networks.

    Updated on Dec 18, 2019 02:42 PM PST
  60. Seminar HDMP-Lunch Q&A session

    Created on Oct 04, 2019 10:50 AM PDT
  61. Seminar HDMP-Lunch Q&A session

    Created on Oct 04, 2019 10:50 AM PDT
  62. Workshop Berlekamp Memorial Workshop on Combinatorial Games

    Organizers: Svenja Huntemann (Carleton University), Richard Nowakowski (Dalhousie University), Aaron Siegel (Airbnb)
    Content berlekamp web image

    Elwyn Berlekamp (1937-2019) was a pioneering contributor to combinatorial game theory, greatly advancing the subject over the course of a more than five-decade career. Along with his coauthors, John Conway and Richard Guy, Berlekamp invented the modern form of the theory, with the publication of Winning Ways for Your Mathematical Plays in 1982. His later work substantially advanced our understanding of the mathematical structure of well-known games such as Go, Amazons, and Dots-and-Boxes. More information about his life can be found at www.msri.org/elwyn.


    This workshop will be an informal two-day mini-conference honoring Berlekamp's work and the subject he helped create. The event will consist of talks, afternoon workshops, and a combinatorial games tournament.

    Updated on Aug 28, 2019 06:09 PM PDT
  63. Workshop Recent developments in microlocal analysis

    Organizers: LEAD Pierre Albin (University of Illinois at Urbana-Champaign), Nalini Anantharaman (Université de Strasbourg), Colin Guillarmou (Université de Paris XI (Paris-Sud))
    315 image1

    Microlocal analysis provides tools for the precise analysis of problems arising in areas such as partial differential equations or integral geometry by working in the phase space, i.e. the cotangent bundle, of the underlying manifold. It has origins in areas such as quantum mechanics and hyperbolic equations, in addition to the development of a general PDE theory, and has expanded tremendously over the last 40 years to the analysis of singular spaces, integral geometry, nonlinear equations, scattering theory, hyperbolic dynamical systems, probability… As this description shows microlocal analysis has become a very broad area. Due to its breadth, it is a challenge for researchers to be aware of what is happening in other parts of the field, and the impact this may have in their own research area. The purpose of this workshop is thus to bring together researchers from different parts of microlocal analysis and its applications to facilitate the transfer of new ideas. 

    Updated on Dec 05, 2019 10:59 AM PST
  64. Seminar HDMP-Lunch Q&A session

    Created on Oct 04, 2019 10:50 AM PDT
  65. Workshop Neural Theories of Cognition

    Organizers: David Eisenbud (MSRI - Mathematical Sciences Research Institute), Adrienne Fairhall (University of Washington), John Maunsell (University of Chicago), Bruno Olshausen (University of California, Berkeley)

    The objective of the meeting is to bring theorists and theoretically-motivated experimentalists together to discuss promising theoretical frameworks for understanding cognitive processes and how these may be brought to bear on interpreting neural data or formulating new experiments. We hope that this meeting will be a chance to discuss future goals for theory in neuroscience: what are missing areas and emerging approaches that might help the field to make real progress in developing theories of brain function.

    Updated on Feb 27, 2020 04:25 PM PST
  66. Seminar 5-Minute Talks

    Updated on Sep 04, 2019 02:45 PM PDT
  67. Seminar 5-Minute Talks

    Updated on Sep 04, 2019 02:45 PM PDT
  68. Seminar 5-Minute Talks

    Updated on Sep 04, 2019 02:45 PM PDT
  69. Seminar 5-Minute Talks

    Updated on Sep 04, 2019 02:45 PM PDT
  70. Workshop Introductory Workshop: Microlocal Analysis

    Organizers: Pierre Albin (University of Illinois at Urbana-Champaign), LEAD Raluca Felea (Rochester Institute of Technology), Andras Vasy (Stanford University)
    315 image1

    Microlocal analysis provides tools for the precise analysis of problems arising in areas such as partial differential equations or integral geometry by working in the phase space, i.e. the cotangent bundle, of the underlying manifold. It has origins in areas such as quantum mechanics and hyperbolic equations, in addition to the development of a general PDE theory, and has expanded tremendously over the last 40 years to the analysis of singular spaces, integral geometry, nonlinear equations, scattering theory… This workshop will provide a comprehensive introduction to the field for postdocs and graduate students as well as specialists outside the field, building up from standard facts about the Fourier transform, distributions and basic functional analysis.

    Updated on Sep 05, 2019 01:10 PM PDT
  71. Workshop Connections for Women: Microlocal Analysis

    Organizers: Tanya Christiansen (University of Missouri), LEAD Raluca Felea (Rochester Institute of Technology)
    315 image1

    This workshop will provide a gentle introduction to a selection of applications of microlocal analysis.  These may be drawn from among geometric microlocal analysis, inverse problems, scattering theory, hyperbolic dynamical systems,  quantum chaos and relativity.  The workshop will also provide  a panel discussion, a poster session and an introduction/research session. 

    This workshop is open to all mathematicians.

    Updated on Sep 24, 2019 09:45 AM PDT
  72. Workshop Introductory Workshop: Holomorphic Differentials in Mathematics and Physics

    Organizers: LEAD Jayadev Athreya (University of Washington), Sergei Gukov (California Institute of Technology), Andrew Neitzke (Yale University), Anna Wienhard (Ruprecht-Karls-Universität Heidelberg)
    Quadmesh2
    Some holomorphic differentials on a genus 2 surface, with close up views of singular points, image courtesy Jian Jiang.

    Holomorphic differentials on Riemann surfaces have long held a distinguished place in low dimensional geometry, dynamics and representation theory. Recently it has become apparent that they constitute a common feature of several other highly active areas of current research in mathematics and also at the interface with physics. In this introductory workshop, we will bring junior and senior researchers from this diverse range of subjects together in order to explore common themes and unexpected connections.

    Updated on Aug 22, 2019 10:50 AM PDT
  73. Workshop Connections for Women: Holomorphic Differentials in Mathematics and Physics

    Organizers: Laura Fredrickson (Stanford University), Lotte Hollands (Heriot-Watt University, Riccarton Campus), LEAD Qiongling Li (Chern Institute of Mathematics), Anna Wienhard (Ruprecht-Karls-Universität Heidelberg), Grace Work (Massachusetts Institute of Technology)
    Quadmesh2
    Some holomorphic differentials on a genus 2 surface, with close up views of singular points, image courtesy Jian Jiang.

    This two-day workshop will consist of various talks given by prominent female mathematicians on topics of new developments in the role of holomorphic differentials on Riemann surfaces. These will be appropriate for graduate students, post-docs, and researchers in areas related to the program.  

    This workshop is open to all mathematicians.

    Updated on Sep 24, 2019 09:48 AM PDT
  74. Program Holomorphic Differentials in Mathematics and Physics

    Organizers: LEAD Jayadev Athreya (University of Washington), Steven Bradlow (University of Illinois at Urbana-Champaign), Sergei Gukov (California Institute of Technology), Andrew Neitzke (Yale University), Anna Wienhard (Ruprecht-Karls-Universität Heidelberg), Anton Zorich (Institut de Mathematiques de Jussieu)
    Quadmesh2
    Some holomorphic differentials on a genus 2 surface, with close up views of singular points, image courtesy Jian Jiang.

    Holomorphic differentials on Riemann surfaces have long held a distinguished place in low dimensional geometry, dynamics and representation theory. Recently it has become apparent that they constitute a common feature of several other highly active areas of current research in mathematics and also at the interface with physics. In some cases the areas themselves (such as stability conditions on Fukaya-type categories, links to quantum integrable systems, or the physically derived construction of so-called spectral networks) are new, while in others the novelty lies more in the role of the holomorphic differentials (for example in the study of billiards in polygons, special - Hitchin or higher Teichmuller - components of representation varieties, asymptotic properties of Higgs bundle moduli spaces, or in new interactions with algebraic geometry).

    It is remarkable how widely scattered are the motivating questions in these areas, and how diverse are the backgrounds of the researchers pursuing them. Bringing together experts in this wide variety of fields to explore common interests and discover unexpected connections is the main goal of our program. Our program will be of interest to those working in many different elds, including low-dimensional dynamical systems (via the connection to billiards); differential geometry (Higgs bundles and related moduli spaces); and different types of theoretical physics (electron transport and supersymmetric quantum field theory).

    Updated on Dec 13, 2019 10:03 AM PST
  75. Program Microlocal Analysis

    Organizers: Pierre Albin (University of Illinois at Urbana-Champaign), Nalini Anantharaman (Université de Strasbourg), Kiril Datchev (Purdue University), Raluca Felea (Rochester Institute of Technology), Colin Guillarmou (Université de Paris XI (Paris-Sud)), LEAD Andras Vasy (Stanford University)
    315 image1

    Microlocal analysis provides tools for the precise analysis of problems arising in areas such as partial differential equations or integral geometry by working in the phase space, i.e. the cotangent bundle, of the underlying manifold. It has origins in areas such as quantum mechanics and hyperbolic equations, in addition to the development of a general PDE theory, and has expanded tremendously over the last 40 years to the analysis of singular spaces, integral geometry, nonlinear equations, scattering theory… This program will bring together researchers from various parts of the field to facilitate the transfer of ideas, and will also provide a comprehensive introduction to the field for postdocs and graduate students.

    Updated on Apr 13, 2018 11:42 AM PDT
  76. Program Complementary Program 2019-20

    The Complementary Program has a limited number of memberships that are open to mathematicians whose interests are not closely related to the core programs; special consideration is given to mathematicians who are partners of an invited member of a core program. 

    Updated on Nov 27, 2018 12:28 PM PST
  77. Summer Graduate School Toric Varieties (National Center for Theoretical Sciences, Taipei, Taiwan)

    Organizers: David Cox (Amherst College), Henry Schenck (Auburn University)
    Firstchoice cropped
    This simplicial fan in 3-dimensional space

    Toric varieties are algebraic varieties defined by combinatorial data, and there is a wonderful interplay between algebra, combinatorics and geometry involved in their study. Many of the key concepts of abstract algebraic geometry (for example, constructing a variety by gluing affine pieces) have very concrete interpretations in the toric case, making toric varieties an ideal tool for introducing students to abstruse concepts.

    Updated on Jul 14, 2020 04:08 PM PDT
  78. Summer Graduate School H-Principle (INdAM, Cortona, Italy)

    Organizers: LEAD Emmy Murphy (Northwestern University), Takashi Tsuboi (University of Tokyo)
    072 04 small
    The image of a large sphere isometrically embedded into a small space through a C^1 embedding. (Attributions: E. Bartzos, V. Borrelli, R. Denis, F. Lazarus, D. Rohmer, B. Thibert)

    This two week summer school will introduce graduate students to the theory of h-principles.  After building up the theory from basic smooth topology, we will focus on more recent developments of the theory, particularly applications to symplectic and contact geometry, fluid dynamics, and foliation theory.

    Updated on Aug 08, 2019 09:31 AM PDT
  79. Summer Graduate School Mathematics of Machine Learning

    Organizers: Sebastien Bubeck (Microsoft Research), Anna Karlin (University of Washington), Adith Swaminathan (Microsoft Research)
    Image
    Popular visualization of the MNIST dataset

    Learning theory is a rich field at the intersection of statistics, probability, computer science, and optimization. Over the last decades the statistical learning approach has been successfully applied to many problems of great interest, such as bioinformatics, computer vision, speech processing, robotics, and information retrieval. These impressive successes relied crucially on the mathematical foundation of statistical learning.

    Recently, deep neural networks have demonstrated stunning empirical results across many applications like vision, natural language processing, and reinforcement learning. The field is now booming with new mathematical problems, and in particular, the challenge of providing theoretical foundations for deep learning techniques is still largely open. On the other hand, learning theory already has a rich history, with many beautiful connections to various areas of mathematics (e.g., probability theory, high dimensional geometry, game theory). The purpose of the summer school is to introduce graduate students (and advanced undergraduates) to these foundational results, as well as to expose them to the new and exciting modern challenges that arise in deep learning and reinforcement learning.

    Updated on Aug 01, 2019 10:00 AM PDT
  80. Summer Graduate School Recent topics on well-posedness and stability of incompressible fluid and related topics

    Organizers: LEAD Yoshikazu Giga (University of Tokyo), Maria Schonbek (University of California, Santa Cruz), Tsuyoshi Yoneda (University of Tokyo)
    Image
    Fluid-flow stream function color-coded by vorticity in 3D flat torus calculated by K. Nakai (The University of Tokyo)

    The purpose of the workshop is to introduce graduate students to fundamental results on the Navier-Stokes and the Euler equations, with special emphasis on the solvability of its initial value problem with rough initial data as well as the large time behavior of a solution. These topics have long research history. However, recent studies clarify the problems from a broad point of view, not only from analysis but also from detailed studies of orbit of the flow.

    Updated on Aug 19, 2019 04:17 PM PDT
  81. Summer Graduate School Polynomial Method

    Organizers: Adam Sheffer (Bernard M. Baruch College, CUNY), LEAD Joshua Zahl (University of British Columbia)
    Twolines3d
    from distinct distances in the plane to line incidences in R^3

    In the past eight years, a number of longstanding open problems in combinatorics were resolved using a new set of algebraic techniques. In this summer school, we will discuss these new techniques as well as some exciting recent developments.

    Updated on Jul 12, 2019 03:36 PM PDT
  82. Summer Graduate School Séminaire de Mathématiques Supérieures 2019: Current trends in Symplectic Topology

    Organizers: Octav Cornea (Université de Montréal), Yakov Eliashberg (Stanford University), Michael Hutchings (University of California, Berkeley), Egor Shelukhin (Université de Montréal)
    Image
    A Holomorphic Curve

    Symplectic topology is a fast developing branch of geometry that has seen phenomenal growth in the last twenty years. This two weeks long summer school, organized in the setting of the Séminaire de Mathématiques Supérieures, intends to survey some of the key directions of development in the subject today thus covering: advances in homological mirror symmetry; applications to hamiltonian dynamics; persistent homology phenomena; implications of flexibility and the dichotomy flexibility/rigidity; legendrian contact homology; embedded contact homology and four-dimensional holomorphic techniques and others. With the collaboration of many of the top researchers in the field today, the school intends to serve as an introduction and guideline to students and young researchers who are interested in accessing this diverse subject. 

    Updated on Dec 10, 2018 04:21 PM PST
  83. Summer Graduate School Geometric Group Theory

    Organizers: LEAD Rita Jiménez Rolland (Instituto de Matematicás, UNAM-Oaxaca), LEAD Pierre Py (Universidad Nacional Autónoma de México)
    Image
    Rips's δ-thin triangle condition for Gromov hyperbolicity of metric spaces (Stomatapoll)

    Geometric group theory studies discrete groups by understanding the connections between algebraic properties of these groups and topological and geometric properties of the spaces on which they act. The aim of this summer school is to  introduce graduate students to specific central topics and recent developments in geometric group theory. The school will also include students presentations to give the participants an opportunity to practice their speaking skills in mathematics.  Finally, we hope that this meeting will help connect Latin American students with their American and Canadian counterparts in an environment that encourages discussion and collaboration. 

    Updated on Jul 03, 2019 11:35 AM PDT
  84. Summer Graduate School Representation stability

    Organizers: Thomas Church (Stanford University), LEAD Andrew Snowden (University of Michigan), Jenny Wilson (University of Michigan)
    Image
    An illustration of an adaptation of Quillen's classical homological stability spectral sequence argument

    This summer school will give an introduction to representation stability, the study of algebraic structural properties and stability phenomena exhibited by sequences of representations of finite or classical groups -- including sequences arising in connection to hyperplane arrangements, configuration spaces, mapping class groups, arithmetic groups, classical representation theory, Deligne categories, and twisted commutative algebras.  Representation stability incorporates tools from commutative algebra, category theory, representation theory, algebraic combinatorics, algebraic geometry, and algebraic topology. This workshop will assume minimal prerequisites, and students in varied disciplines are encouraged to apply. 

    Updated on Jul 03, 2019 03:47 PM PDT
  85. MSRI-UP MSRI-UP 2019: Combinatorics and Discrete Mathematics

    Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Franco (Queensborough Community College (CUNY); MSRI - Mathematical Sciences Research Institute), LEAD Rebecca Garcia (Sam Houston State University), Pamela Harris (Williams College), Suzanne Weekes (Worcester Polytechnic Institute)

    The MSRI-UP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.

    In 2019, MSRI-Up will focus on the application of combinatorial arguments and techniques to enumerate, examine, and investigate the existence of discrete mathematical structures with certain properties. The areas of interest for these applications encompass a wide range of mathematical fields and will include algebra, number theory, and graph theory, through weight multiplicity computations, the study of vector partition functions, and graph domination problems, respectively. The research program will be led by Dr. Pamela E. Harris, Assistant Professor of Mathematics at Williams College.

    Updated on Jul 22, 2020 02:54 PM PDT
  86. Summer Research in Mathematics 2019 Summer Research for Women in Mathematics (SWiM)

    The purpose of the MSRI's program, Summer Research for Women in Mathematics, is to provide space and funds to groups of women mathematicians to work on a research project at MSRI. Research projects can arise from work initiated at a Women's Conference, or can be freestanding activities.

    Created on Jan 30, 2019 11:17 AM PST
  87. Summer Graduate School Random and arithmetic structures in topology

    Organizers: LEAD Alexander Furman (University of Illinois at Chicago), Tsachik Gelander (Weizmann Institute of Science)
    Blurred 016

    The study of locally symmetric manifolds, such as closed hyperbolic manifolds, involves geometry of the corresponding symmetric space, topology of towers of its finite covers, and number-theoretic aspects that are relevant to possible constructions.
    The workshop will provide an introduction to these and closely related topics such as lattices, invariant random subgroups, and homological methods.

    Updated on Jul 09, 2019 08:17 AM PDT
  88. Summer Graduate School Commutative Algebra and its Interaction with Algebraic Geometry

    Organizers: Craig Huneke (University of Virginia), Sonja Mapes (University of Notre Dame), Juan Migliore (University of Notre Dame), LEAD Claudia Polini (University of Notre Dame), Claudiu Raicu (University of Notre Dame)
    Image
    The figure represents a blow-up. The so called blow-up algebras or Rees rings are the algebraic realizations of such blow-ups.

    Linkage is a method for classifying ideals in local rings. Residual intersections is a generalization of linkage to the case where the two `linked' ideals  need not have the same codimension. Residual intersections are ubiquitous: they play an important role in the study of blowups, branch and multiple point loci, secant varieties, and Gauss images; they appear naturally in intersection theory; and they have close connections with integral closures of ideals. 

    Commutative algebraists have long used the Frobenius or p-th power map to study commutative rings containing a finite fi eld. The theory of tight closure and test ideals has widespread applications to the study of symbolic powers and to Briancon-Skoda type theorems for equi-characteristic rings.

    Numerical conditions for the integral dependence of ideals and modules have a wealth of applications, not the least of which is in equisingularity theory. There is a long history of generalized criteria for integral dependence of ideals and modules based on variants of the Hilbert-Samuel and the Buchsbaum-Rim multiplicity that still require some remnants of finite length assumptions.

    The Rees ring and the special fiber ring of an ideal arise in the process of blowing up a variety along a subvariety. Rees rings and special fiber rings also describe, respectively, the graphs and the images of rational maps between projective spaces. A difficult open problem in commutative algebra, algebraic geometry, elimination theory, and geometric modeling is to determine explicitly the equations defining graphs and images of rational maps.

    The school will consist of the following four courses with exercise sessions plus a Macaulay2 workshop

    • Linkage and residual intersections
    • Characteristic p methods and applications
    • Blowup algebras
    • Multiplicity theory

    Updated on May 29, 2019 09:11 AM PDT
  89. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  90. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  91. Workshop Recent Progress in Moduli Theory

    Organizers: Lucia Caporaso (Terza Università di Roma), LEAD Sándor Kovács (University of Washington), Martin Olsson (University of California, Berkeley)
    Moduli b

    This workshop will be focused on presenting the latest developments in moduli theory, including (but not restricted to) recent advances in compactifications of moduli spaces of higher dimensional varieties, the birational geometry of moduli spaces, abstract methods including stacks, stability criteria, and applications in other disciplines. 

    Updated on Sep 24, 2019 09:45 AM PDT
  92. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  93. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  94. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  95. Workshop 2019 Spring Opportunities Workshop

    Organizers: Brianna Donaldson (AIM - American Institute of Mathematics), Leslie Hogben (AIM - American Institute of Mathematics; Iowa State University), Michael Young (Iowa State University)

    GOAL: To highlight careers and opportunities in the mathematical sciences, and to prepare women
    and underrepresented minorities for work in academia, industry, and government laboratories.

    Updated on Mar 08, 2019 11:08 AM PST
  96. Seminar Chromatic DAG Seminar:

    Created on Mar 12, 2019 09:16 AM PDT
  97. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  98. Workshop Hot Topics: Recent progress in Langlands Program

    Organizers: Mark Kisin (Harvard University), Elena Mantovan (California Institute of Technology), LEAD Xinwen Zhu (California Institute of Technology)

    The purpose of the workshop is to explain Vincent Lafforgue's ground breaking work, constructing the automorphic to Galois direction of the Langlands correspondence for function fields. There will also be a number of talks on more recent developments and related results.

    Updated on Sep 24, 2019 09:46 AM PDT
  99. Seminar DAG Seminar: TBA

    Updated on Mar 29, 2019 10:59 AM PDT
  100. Seminar Chromatic DAG Seminar:

    Created on Mar 12, 2019 09:16 AM PDT
  101. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  102. Workshop Derived algebraic geometry and its applications

    Organizers: Dennis Gaitsgory (Harvard University), David Nadler (University of California, Berkeley), LEAD Nick Rozenblyum (University of Chicago), Peter Scholze (Universität Bonn), Brooke Shipley (University of Illinois at Chicago)

    This workshop will bring together researchers at various frontiers, including arithmetic geometry, representation theory, mathematical physics, and homotopy theory, where derived algebraic geometry has had recent impact. The aim will be to explain the ideas and tools behind recent progress and to advertise appealing questions. A focus will be on moduli spaces, for example of principal bundles with decorations as arise in many settings, and their natural structures.    

    Updated on Sep 24, 2019 09:46 AM PDT
  103. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  104. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  105. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  106. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  107. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  108. Seminar 5 minute talks

    Created on Feb 08, 2019 01:43 PM PST
  109. Seminar 5 minute talks

    Created on Feb 08, 2019 01:43 PM PST
  110. Workshop Introductory Workshop: Derived Algebraic Geometry and Birational Geometry and Moduli Spaces

    Organizers: Julie Bergner (University of Virginia), Bhargav Bhatt (University of Michigan), Christopher Hacon (University of Utah), LEAD Mircea Mustaţă (University of Michigan), Gabriele Vezzosi (Università di Firenze)
    Tuelle picture
    A picture of a singularity, courtesy of Herwig Hauser

    The workshop will survey several areas of algebraic geometry, providing an introduction to the two main programs hosted by MSRI in Spring 2019. It will consist of 7 expository mini-courses and 7 separate lectures, each given by top experts in the field. 

    The focus of the workshop will be the recent progress in derived algebraic geometry, birational geometry and moduli spaces. The lectures will be aimed at a wide audience including advanced graduate students and postdocs with a background in algebraic geometry.
     

    Updated on Sep 24, 2019 09:47 AM PDT
  111. Workshop Connections for Women: Derived Algebraic Geometry, Birational Geometry and Moduli Spaces

    Organizers: Julie Bergner (University of Virginia), LEAD Antonella Grassi (University of Pennsylvania), Bianca Viray (University of Washington), Kirsten Wickelgren (Georgia Institute of Technology)
    Image
    Image created by Tristan Hübsch

    This workshop will be on different aspects of Algebraic Geometry relating Derived Algebraic Geometry and Birational Geometry. In particular the workshop will focus on connections to other branches of mathematics and open problems. There will be some colloquium style lectures as well as shorter research talks. The workshop is open to all.

    Updated on Sep 24, 2019 09:47 AM PDT
  112. Program Derived Algebraic Geometry

    Organizers: Julie Bergner (University of Virginia), LEAD Bhargav Bhatt (University of Michigan), Dennis Gaitsgory (Harvard University), David Nadler (University of California, Berkeley), Nick Rozenblyum (University of Chicago), Peter Scholze (Universität Bonn), Gabriele Vezzosi (Università di Firenze)
    Image
    Courtesy of G. Karapet

    Derived algebraic geometry is an extension of algebraic geometry that provides a convenient framework for directly treating non-generic geometric situations (such as non-transverse intersections in intersection theory), in lieu of the more traditional perturbative approaches (such as the “moving” lemma). This direct approach, in addition to being conceptually satisfying, has the distinct advantage of preserving the symmetries of the situation, which makes it much more applicable. In particular, in recent years, such techniques have found applications in diverse areas of mathematics, ranging from arithmetic geometry, mathematical physics, geometric representation theory, and homotopy theory. This semester long program will be dedicated to exploring these directions further, and finding new connections.

    Updated on Jan 02, 2019 03:00 PM PST
  113. Program Birational Geometry and Moduli Spaces

    Organizers: Antonella Grassi (University of Pennsylvania), LEAD Christopher Hacon (University of Utah), Sándor Kovács (University of Washington), Mircea Mustaţă (University of Michigan), Martin Olsson (University of California, Berkeley)

    Birational Geometry and Moduli Spaces are two important areas of Algebraic Geometry that have recently witnessed a flurry of activity and substantial progress on many fundamental open questions. In this program we aim to  bring together key researchers in these and related areas to highlight the recent exciting progress and to explore future avenues of research.
     
    This program will focus on the following themes: Geometry and Derived Categories, Birational Algebraic Geometry, Moduli Spaces of Stable Varieties, Geometry in Characteristic p>0, and Applications of Algebraic Geometry: Elliptic Fibrations of Calabi-Yau Varieties in Geometry, Arithmetic and the Physics of String Theory

    Updated on Jan 31, 2017 07:46 PM PST
  114. Seminar Arnold Diffusion

    Created on Dec 05, 2018 03:17 PM PST
  115. Workshop Hamiltonian systems, from topology to applications through analysis II

    Organizers: Alessandra Celletti (Seconda Università di Roma "Tor Vergata''), Rafael de la Llave (Georgia Institute of Technology), Diego del-Castillo-Negrete (Oak Ridge National Laboratory), Lawrence Evans (University of California, Berkeley), LEAD Philip Morrison (University of Texas, Austin), Sergei Tabachnikov (Pennsylvania State University), Amie Wilkinson (University of Chicago)
    Web image
    An invariant set inhibiting transport in a two degree-of-freedom Hamiltonian system (courtesy J. D. Szezech)

    This is a main workshop of the program “Hamiltonian systems, from topology to applications through analysis.”  It  will feature current developments pertaining to finite and infinite-dimensional Hamiltonian systems, with a mix of rigorous theory and applications.  A broad range of topics will be included, e.g., existence of and transport about invariant sets (Arnold diffusion, KAM, etc.),  techniques for projection/reduction of infinite to finite systems, and the role of topological invariants in applications.

    Updated on Dec 14, 2018 12:29 PM PST
  116. Workshop 2018 Blackwell-Tapia Conference and Award Banquet

    The NSF Mathematical Sciences Institutes Diversity Committee hosts the 2018 Blackwell-Tapia Conference and Awards Ceremony. This is the ninth conference since 2000, held every other year, with the location rotating among NSF Mathematics Institutes. The conference and prize honors David Blackwell, the first African-American member of the National Academy of Science, and Richard Tapia, winner of the National Medal of Science in 2010, two seminal figures who inspired a generation of African-American, Native American and Latino/Latina students to pursue careers in mathematics. The Blackwell-Tapia Prize recognizes a mathematician who has contributed significantly to research in his or her area of expertise, and who has served as a role model for mathematical scientists and students from underrepresented minority groups, or has contributed in other significant ways to addressing the problem of underrepresentation of minorities in math.

    The 2018 recipient of the Blackwell-Tapia Prize is Dr. Ronald E. Mickens, the Distinguished Fuller E. Callaway Professor in the Department of Physics at Clark Atlanta University.

    The conference will include scientific talks, poster presentations, panel discussions, ample opportunities for networking, and the awarding of the Blackwell-Tapia Prize. Participants are invited from all career stages and will represent institutions of all sizes across the country, including Puerto Rico.

    Updated on May 08, 2018 12:46 PM PDT
  117. Workshop 2018 Modern Math Workshop

    Organizers: Hélène Barcelo (MSRI - Mathematical Sciences Research Institute), LEAD Elvan Ceyhan (SAMSI - Statistical and Applied Mathematical Sciences Institute), Leslie McClure (SAMSI - Statistical and Applied Mathematical Sciences Institute), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))

    The Mathematical Sciences Diversity Initiative holds a Modern Math Workshop (MMW) prior to the SACNAS National Conference each year. The 2018 MMW will be hosted by SAMSI at the Henry B. Gonzalez Convention Center, San Antonio, Texas on October 10th and 11th, 2018. This workshop is intended to encourage undergraduates, graduate students and recent PhDs from underrepresented minority groups to pursue careers in the mathematical sciences and build research and mentoring networks. The Modern Math Workshop is a pre-conference event at the SACNAS National Conference. The MMW includes a keynote lecture, mini-courses, research talks, a question and answer session and a reception.

    Updated on Mar 15, 2018 12:33 PM PDT
  118. Workshop Hamiltonian systems, from topology to applications through analysis I

    Organizers: Alessandra Celletti (Seconda Università di Roma "Tor Vergata''), Rafael de la Llave (Georgia Institute of Technology), Diego del-Castillo-Negrete (Oak Ridge National Laboratory), Lawrence Evans (University of California, Berkeley), LEAD Philip Morrison (University of Texas, Austin), Sergei Tabachnikov (Pennsylvania State University), Amie Wilkinson (University of Chicago)
    Web image
    Depiction of the standard nontwist map (courtesy of G.Miloshevich).

    This is a main workshop of the program “Hamiltonian systems, from topology to applications through analysis” and is a companion to the workshop next month (November 26-30).  Both workshops will feature current developments pertaining to finite and infinite-dimensional Hamiltonian systems, with a mix of rigorous theory and applications.  A broad range of topics will be included, e.g., existence of and transport about invariant sets (Arnold diffusion, KAM, etc.),  techniques for projection/reduction of infinite to finite systems, and the role of topological invariants in applications.

    Updated on Oct 15, 2018 12:28 PM PDT
  119. Workshop Hot Topics: Shape and Structure of Materials

    Organizers: Myfanwy Evans (TU Berlin), LEAD Frank Lutz (TU Berlin), Dmitriy Morozov (Lawrence Berkeley National Laboratory), James Sethian (University of California, Berkeley), Ileana Streinu (Smith College)
    Msri lbnl pic 3
    Tangled honeycomb networks | and the Advanced Light Source at LBNL

    The fascinating and complicated microstructures of materials that are now visible through advanced imaging techniques challenge the frontiers of characterisation and understanding. At the same time, developments in modern geometric and topological techniques are beginning to illuminate important features of material structures, while the microstructures themselves and the analysis and prediction of their macroscopic properties are inspiring new directions in pure and applied mathematics. In a collaboration with the Lawrence Berkeley National Laboratory (LBNL), this workshop aims at intensifying the interaction of mathematicians with material scientists, physicists and chemists on the structural description and design of materials.

    Updated on Oct 05, 2018 03:08 PM PDT
  120. Seminar Graduate Student Seminar

    Created on Sep 07, 2018 10:39 AM PDT
  121. Seminar Five Minute Talks

    Updated on Aug 24, 2018 09:08 AM PDT
  122. Seminar Five Minute Talks

    Updated on Aug 24, 2018 09:07 AM PDT
  123. Workshop Introductory Workshop: Hamiltonian systems, from topology to applications through analysis

    Organizers: Marie-Claude Arnaud (Université d'Avignon), Wilfrid Gangbo (University of California, Los Angeles), LEAD vadim kaloshin (University of Maryland), Robert Littlejohn (University of California, Berkeley), Philip Morrison (University of Texas, Austin)

    The introductory workshop will cover the large variety of topics of the semester: weak KAM theory, Mather theory, Hamilton-Jacobi equations, integrable systems and integrable planar billiards, instability formation for nearly integrable systems, celestial mechanics, billiards, spectral rigidity, Astrodynamics, motion of satellites, Plasma Physics, Accelerator Physics, Theoretical Chemistry, and Atomic Physics.

    The workshop will consist of approximately 18 lectures to introduce the main topics relevant to the semester. That will leave time for discussions and exchange between the participants.

    Updated on Oct 05, 2018 02:51 PM PDT
  124. Workshop Connections for Women: Hamiltonian Systems, from topology to applications through analysis

    Organizers: Marie-Claude Arnaud (Université d'Avignon), LEAD Basak Gurel (University of Central Florida), Tere Seara (Polytechnical University of Cataluña (Barcelona))
    330px std map 0.971635
    Representing the orbits of the standard map for K = 1.2

    This workshop will feature lectures on a variety of topics in Hamiltonian dynamics given by leading researchers in the area. The talks will focus on recent developments in subjects closely related to the program such as Arnold diffusion, celestial mechanics, Hamilton-Jacobi equations, KAM methods, Aubry-Mather theory and symplectic topological techniques, and on applications. The workshop is open to all mathematicians in areas related to the program.

    Updated on Dec 05, 2018 03:43 PM PST
  125. Program Hamiltonian systems, from topology to applications through analysis

    Organizers: Rafael de la Llave (Georgia Institute of Technology), LEAD Albert Fathi (Georgia Institute of Technology; École Normale Supérieure de Lyon), vadim kaloshin (University of Maryland), Robert Littlejohn (University of California, Berkeley), Philip Morrison (University of Texas, Austin), Tere Seara (Polytechnical University of Cataluña (Barcelona)), Sergei Tabachnikov (Pennsylvania State University), Amie Wilkinson (University of Chicago)

    The interdisciplinary nature of Hamiltonian systems is deeply ingrained in its history. Therefore the program will bring together the communities of mathematicians with the community of practitioners, mainly engineers, physicists, and theoretical chemists who use Hamiltonian systems daily. The program will cover not only the mathematical aspects of Hamiltonian systems but also their applications, mainly in space mechanics, physics and chemistry.

    The mathematical aspects comprise celestial mechanics, variational methods, relations with PDE, Arnold diffusion and computation. The applications concern celestial mechanics, astrodynamics, motion of satellites, plasma physics, accelerator physics, theoretical chemistry, and atomic physics.

    The goal of the program is to bring to the forefront both the theoretical aspects and the applications, by making available for applications the latest theoretical developments, and also by nurturing the theoretical mathematical aspects with new problems that come from concrete problems of applications.

    Updated on Aug 20, 2018 08:16 AM PDT
  126. Program Complementary Program 2018-19

    The Complementary Program has a limited number of memberships that are open to mathematicians whose interests are not closely related to the core programs; special consideration is given to mathematicians who are partners of an invited member of a core program. 

    Updated on Jun 03, 2019 10:25 AM PDT
  127. Summer Graduate School From Symplectic Geometry to Chaos

    Organizers: Marcel Guardia (Polytechnical University of Cataluña (Barcelona) ), vadim kaloshin (University of Maryland), Leonid Polterovich (Tel Aviv University)

    The purpose of the summer school is to introduce graduate students to state-of-the-art methods and results in Hamiltonian systems and symplectic geometry. We focus on recent developments on the study of chaotic motion in Hamiltonian systems and its applications to models in Celestial Mechanics.

    Updated on Jul 31, 2018 12:12 PM PDT
  128. Summer Graduate School Representations of High Dimensional Data

    Organizers: Blake Hunter (Microsoft), Deanna Needell (University of California, Los Angeles)
    Image

    In today's world, data is exploding at a faster rate than computer architectures can handle. This summer school will introduce students to modern and innovative mathematical techniques that address this phenomenon. Hands-on topics will include data mining, compression, classification, topic modeling, large-scale stochastic optimization, and more.

    Updated on Jul 19, 2018 11:45 AM PDT
  129. Summer Graduate School IAS/PCMI 2018: Harmonic Analysis

    Organizers: Carlos Kenig (University of Chicago), Fanghua Lin (New York University, Courant Institute), Svitlana Mayboroda (University of Minnesota, Twin Cities), Tatiana Toro (University of Washington)

    Harmonic analysis is a central field of mathematics with a number of applications to geometry, partial differential equations, probability, and number theory, as well as physics, biology, and engineering. The Graduate Summer School will feature mini-courses in geometric measure theory, homogenization, localization, free boundary problems, and partial differential equations as they apply to questions in or draw techniques from harmonic analysis. The goal of the program is to bring together students and researchers at all levels interested in these areas to share exciting recent developments in these subjects, stimulate further interactions, and inspire the new generation to pursue research in harmonic analysis and its applications.

    Updated on Jun 20, 2018 12:17 PM PDT
  130. Summer Graduate School Derived Categories

    Organizers: Nicolas Addington (University of Oregon), LEAD Alexander Polishchuk (University of Oregon)

    The goal of the school is to give an introduction to basic techniques for working with derived categories, with an emphasis on the derived categories of coherent sheaves on algebraic varieties. A particular goal will be to understand Orlov’s equivalence relating the derived category of a projective hypersurface with matrix factorizations of the corresponding polynomial.

    Updated on Jul 05, 2018 09:05 AM PDT
  131. Summer Graduate School H-principle

    Organizers: Emmy Murphy (Northwestern University), Takashi Tsuboi (University of Tokyo)
    072 04 small
    The image of a large sphere isometrically embedded into a small space through a C^1 embedding. (Attributions: E. Bartzos, V. Borrelli, R. Denis, F. Lazarus, D. Rohmer, B. Thibert)

    This two week summer school will introduce graduate students to the theory of h-principles.  After building up the theory from basic smooth topology, we will focus on more recent developments of the theory, particularly applications to symplectic and contact geometry, and foliation theory.

    Updated on Jun 20, 2018 12:17 PM PDT
  132. Summer Graduate School Mathematical Analysis of Behavior

    Organizers: Ann Hermundstad (Janelia Research Campus, HHMI), Vivek Jayaraman (Janelia Research Campus, HHMI), Eva Kanso (University of Southern California), L. Mahadevan (Harvard University)
    Image

    Explore Outstanding Phenomena in Animal Behavior

    Jointly hosted by Janelia and the Mathematical Sciences Research Institute (MSRI), this program will bring together 15-20 advanced PhD students with complementary expertise who are interested in working at the interface of mathematics and biology. Emphasis will be placed on linking behavior to neural dynamics and exploring the coupling between these processes and the natural sensory environment of the organism. The aim is to educate a new type of global scientist that will work collaboratively in tackling complex problems in cellular, circuit and behavioral biology by combining experimental and computational techniques with rigorous mathematics and physics.

    Updated on Jun 20, 2018 12:16 PM PDT
  133. MSRI-UP MSRI-UP 2018: The Mathematics of Data Science

    Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), LEAD Maria Franco (Queensborough Community College (CUNY); MSRI - Mathematical Sciences Research Institute), Rebecca Garcia (Sam Houston State University), David Uminsky (University of San Francisco), Suzanne Weekes (Worcester Polytechnic Institute)

    The MSRI-UP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.

    In 2018, MSRI-UP will focus on the core role of (linear) algebra in current research and application areas of Data Science ranging from unsupervised learning, clustering and networks, to algebraic signal processing and feature extraction, to the central role linear algebra plays in deep machine learning.  The research program will be led by Dr. David Uminsky, Associate Professor of Mathematics and Statistics at the University of San Francisco.

    Updated on Jul 22, 2020 02:56 PM PDT
  134. Program Summer Research for Women in Mathematics

    Organizers: Hélène Barcelo (MSRI - Mathematical Sciences Research Institute)

    See this LINK for the 2019 Summer Research for Women in Mathematics program.
     
    The purpose of the MSRI's program, Summer Research for Women in Mathematics, is to provide space and funds to groups of women mathematicians to work on a research project at MSRI. Research projects can arise from work initiated at a Women's Conference, or can be freestanding activities.

    Updated on Sep 11, 2018 01:32 PM PDT
  135. Summer Graduate School The ∂-Problem in the Twenty-First Century

    Organizers: Debraj Chakrabarti (Central Michigan University), Jeffery McNeal (Ohio State University)

    This Summer Graduate School will introduce students to the modern theory of the  inhomogeneous Cauchy-Riemann equation, the fundamental partial differential equation of Complex Analysis. This theory uses powerful tools of partial differential equations, differential geometry and functional analysis to obtain a refined understanding of holomorphic functions on complex manifolds. Besides students planning to work in complex analysis, this course will be valuable to those planning to study partial differential equations, complex differential and algebraic geometry, and operator theory. The exposition will be self-contained and the prerequisites will be kept at a minimum

    Updated on Jun 21, 2018 01:13 PM PDT
  136. Summer Graduate School Séminaire de Mathématiques Supérieures 2018: Derived Geometry and Higher Categorical Structures in Geometry and Physics

    Organizers: Anton Alekseev (Université de Genève), Ruxandra Moraru (University of Waterloo), Chenchang Zhu (Universität Göttingen)

    Higher categorical structures and homotopy methods have made significant influence on geometry in recent years. This summer school is aimed at transferring these ideas and fundamental technical tools to the next generation of mathematicians.

    The summer school will focus on the following four topics:  higher categorical structures in geometry, derived geometry, factorization algebras, and their application in physics.  There will be eight to ten mini courses on these topics, including mini courses led by Chirs Brav, Kevin Costello, Jacob Lurie, and Ezra Getzler. The prerequisites will be kept at a minimum, however, a introductory courses in differential geometry, algebraic topology and abstract algebra are recommended.

    Updated on Jun 20, 2018 12:16 PM PDT