Logo

Mathematical Sciences Research Institute

Home > Scientific > Past

Past Scientific Events

  1. Workshop Connections for Women: Holomorphic Differentials in Mathematics and Physics

    Organizers: Laura Fredrickson (Stanford University), Lotte Hollands (Heriot-Watt University, Riccarton Campus), LEAD Qiongling Li (Chern Institute of Mathematics), Anna Wienhard (Ruprecht-Karls-Universität Heidelberg), Grace Work (Massachusetts Institute of Technology)
    Quadmesh2
    Some holomorphic differentials on a genus 2 surface, with close up views of singular points, image courtesy Jian Jiang.

    This two-day workshop will consist of various talks given by prominent female mathematicians on topics of new developments in the role of holomorphic differentials on Riemann surfaces. These will be appropriate for graduate students, post-docs, and researchers in areas related to the program.  

    This workshop is open to all mathematicians.

    Updated on Aug 15, 2019 03:25 PM PDT
  2. Summer Graduate School Toric Varieties (National Center for Theoretical Sciences, Taipei)

    Organizers: David Cox (Amherst College), Henry Schenck (Iowa State University)
    Firstchoice cropped
    This simplicial fan in 3-dimensional space

    Toric varieties are algebraic varieties defined by combinatorial data, and there is a wonderful interplay between algebra, combinatorics and geometry involved in their study. Many of the key concepts of abstract algebraic geometry (for example, constructing a variety by gluing affine pieces) have very concrete interpretations in the toric case, making toric varieties an ideal tool for introducing students to abstruse concepts.

    Updated on Aug 08, 2019 09:27 AM PDT
  3. Summer Graduate School H-Principle (INdAM, Cortona, Italy)

    Organizers: LEAD Emmy Murphy (Northwestern University), Takashi Tsuboi (University of Tokyo)
    072 04 small
    The image of a large sphere isometrically embedded into a small space through a C^1 embedding. (Attributions: E. Bartzos, V. Borrelli, R. Denis, F. Lazarus, D. Rohmer, B. Thibert)

    This two week summer school will introduce graduate students to the theory of h-principles.  After building up the theory from basic smooth topology, we will focus on more recent developments of the theory, particularly applications to symplectic and contact geometry, fluid dynamics, and foliation theory.

    Updated on Aug 08, 2019 09:31 AM PDT
  4. Summer Graduate School Mathematics of Machine Learning

    Organizers: Sebastien Bubeck (Microsoft Research), Anna Karlin (University of Washington), Adith Swaminathan (Microsoft Research)
    Image
    Popular visualization of the MNIST dataset

    Learning theory is a rich field at the intersection of statistics, probability, computer science, and optimization. Over the last decades the statistical learning approach has been successfully applied to many problems of great interest, such as bioinformatics, computer vision, speech processing, robotics, and information retrieval. These impressive successes relied crucially on the mathematical foundation of statistical learning.

    Recently, deep neural networks have demonstrated stunning empirical results across many applications like vision, natural language processing, and reinforcement learning. The field is now booming with new mathematical problems, and in particular, the challenge of providing theoretical foundations for deep learning techniques is still largely open. On the other hand, learning theory already has a rich history, with many beautiful connections to various areas of mathematics (e.g., probability theory, high dimensional geometry, game theory). The purpose of the summer school is to introduce graduate students (and advanced undergraduates) to these foundational results, as well as to expose them to the new and exciting modern challenges that arise in deep learning and reinforcement learning.

    Updated on Aug 01, 2019 10:00 AM PDT
  5. Summer Graduate School Recent topics on well-posedness and stability of incompressible fluid and related topics

    Organizers: LEAD Yoshikazu Giga (University of Tokyo), Maria Schonbek (University of California, Santa Cruz), Tsuyoshi Yoneda (University of Tokyo)
    Image
    Fluid-flow stream function color-coded by vorticity in 3D flat torus calculated by K. Nakai (The University of Tokyo)

    The purpose of the workshop is to introduce graduate students to fundamental results on the Navier-Stokes and the Euler equations, with special emphasis on the solvability of its initial value problem with rough initial data as well as the large time behavior of a solution. These topics have long research history. However, recent studies clarify the problems from a broad point of view, not only from analysis but also from detailed studies of orbit of the flow.

    Updated on Aug 19, 2019 04:17 PM PDT
  6. Summer Graduate School Polynomial Method

    Organizers: Adam Sheffer (Bernard M. Baruch College, CUNY), LEAD Joshua Zahl (University of British Columbia)
    Twolines3d
    from distinct distances in the plane to line incidences in R^3

    In the past eight years, a number of longstanding open problems in combinatorics were resolved using a new set of algebraic techniques. In this summer school, we will discuss these new techniques as well as some exciting recent developments.

    Updated on Jul 12, 2019 03:36 PM PDT
  7. Summer Graduate School Séminaire de Mathématiques Supérieures 2019: Current trends in Symplectic Topology

    Organizers: Octav Cornea (Université de Montréal), Yakov Eliashberg (Stanford University), Michael Hutchings (University of California, Berkeley), Egor Shelukhin (Université de Montréal)
    Image
    A Holomorphic Curve

    Symplectic topology is a fast developing branch of geometry that has seen phenomenal growth in the last twenty years. This two weeks long summer school, organized in the setting of the Séminaire de Mathématiques Supérieures, intends to survey some of the key directions of development in the subject today thus covering: advances in homological mirror symmetry; applications to hamiltonian dynamics; persistent homology phenomena; implications of flexibility and the dichotomy flexibility/rigidity; legendrian contact homology; embedded contact homology and four-dimensional holomorphic techniques and others. With the collaboration of many of the top researchers in the field today, the school intends to serve as an introduction and guideline to students and young researchers who are interested in accessing this diverse subject. 

    Updated on Dec 10, 2018 04:21 PM PST
  8. Summer Graduate School Geometric Group Theory

    Organizers: LEAD Rita Jiménez Rolland (Instituto de Matematicás, UNAM-Oaxaca), LEAD Pierre Py (Instituto de Matematicás, UNAM-Ciudad Universitaria)
    Image
    Rips's δ-thin triangle condition for Gromov hyperbolicity of metric spaces (Stomatapoll)

    Geometric group theory studies discrete groups by understanding the connections between algebraic properties of these groups and topological and geometric properties of the spaces on which they act. The aim of this summer school is to  introduce graduate students to specific central topics and recent developments in geometric group theory. The school will also include students presentations to give the participants an opportunity to practice their speaking skills in mathematics.  Finally, we hope that this meeting will help connect Latin American students with their American and Canadian counterparts in an environment that encourages discussion and collaboration. 

    Updated on Jul 03, 2019 11:35 AM PDT
  9. Summer Graduate School Representation stability

    Organizers: Thomas Church (Stanford University), LEAD Andrew Snowden (University of Michigan), Jenny Wilson (University of Michigan)
    Image
    An illustration of an adaptation of Quillen's classical homological stability spectral sequence argument

    This summer school will give an introduction to representation stability, the study of algebraic structural properties and stability phenomena exhibited by sequences of representations of finite or classical groups -- including sequences arising in connection to hyperplane arrangements, configuration spaces, mapping class groups, arithmetic groups, classical representation theory, Deligne categories, and twisted commutative algebras.  Representation stability incorporates tools from commutative algebra, category theory, representation theory, algebraic combinatorics, algebraic geometry, and algebraic topology. This workshop will assume minimal prerequisites, and students in varied disciplines are encouraged to apply. 

    Updated on Jul 03, 2019 03:47 PM PDT
  10. MSRI-UP MSRI-UP 2019: Combinatorics and Discrete Mathematics

    Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Franco (Queensborough Community College (CUNY); MSRI - Mathematical Sciences Research Institute), LEAD Rebecca Garcia (Sam Houston State University), Pamela Harris (Williams College), Suzanne Weekes (Worcester Polytechnic Institute)

    The MSRI-UP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.

    In 2019, MSRI-Up will focus on the application of combinatorial arguments and techniques to enumerate, examine, and investigate the existence of discrete mathematical structures with certain properties. The areas of interest for these applications encompass a wide range of mathematical fields and will include algebra, number theory, and graph theory, through weight multiplicity computations, the study of vector partition functions, and graph domination problems, respectively. The research program will be led by Dr. Pamela E. Harris, Assistant Professor of Mathematics at Williams College.

    Updated on May 02, 2019 02:40 PM PDT
  11. Summer Research for Women in Mathematics 2019 Summer Research for Women in Mathematics (SWiM)

    The purpose of the MSRI's program, Summer Research for Women in Mathematics, is to provide space and funds to groups of women mathematicians to work on a research project at MSRI. Research projects can arise from work initiated at a Women's Conference, or can be freestanding activities.

    Created on Jan 30, 2019 11:17 AM PST
  12. Summer Graduate School Random and arithmetic structures in topology

    Organizers: LEAD Alexander Furman (University of Illinois at Chicago), Tsachik Gelander (Weizmann Institute of Science)
    Blurred 016

    The study of locally symmetric manifolds, such as closed hyperbolic manifolds, involves geometry of the corresponding symmetric space, topology of towers of its finite covers, and number-theoretic aspects that are relevant to possible constructions.
    The workshop will provide an introduction to these and closely related topics such as lattices, invariant random subgroups, and homological methods.

    Updated on Jul 09, 2019 08:17 AM PDT
  13. Summer Graduate School Commutative Algebra and its Interaction with Algebraic Geometry

    Organizers: Craig Huneke (University of Virginia), Sonja Mapes (University of Notre Dame), Juan Migliore (University of Notre Dame), LEAD Claudia Polini (University of Notre Dame), Claudiu Raicu (University of Notre Dame)
    Image
    The figure represents a blow-up. The so called blow-up algebras or Rees rings are the algebraic realizations of such blow-ups.

    Linkage is a method for classifying ideals in local rings. Residual intersections is a generalization of linkage to the case where the two `linked' ideals  need not have the same codimension. Residual intersections are ubiquitous: they play an important role in the study of blowups, branch and multiple point loci, secant varieties, and Gauss images; they appear naturally in intersection theory; and they have close connections with integral closures of ideals. 

    Commutative algebraists have long used the Frobenius or p-th power map to study commutative rings containing a finite fi eld. The theory of tight closure and test ideals has widespread applications to the study of symbolic powers and to Briancon-Skoda type theorems for equi-characteristic rings.

    Numerical conditions for the integral dependence of ideals and modules have a wealth of applications, not the least of which is in equisingularity theory. There is a long history of generalized criteria for integral dependence of ideals and modules based on variants of the Hilbert-Samuel and the Buchsbaum-Rim multiplicity that still require some remnants of finite length assumptions.

    The Rees ring and the special fiber ring of an ideal arise in the process of blowing up a variety along a subvariety. Rees rings and special fiber rings also describe, respectively, the graphs and the images of rational maps between projective spaces. A difficult open problem in commutative algebra, algebraic geometry, elimination theory, and geometric modeling is to determine explicitly the equations defining graphs and images of rational maps.

    The school will consist of the following four courses with exercise sessions plus a Macaulay2 workshop

    • Linkage and residual intersections
    • Characteristic p methods and applications
    • Blowup algebras
    • Multiplicity theory

    Updated on May 29, 2019 09:11 AM PDT
  14. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  15. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  16. Workshop Recent Progress in Moduli Theory

    Organizers: Lucia Caporaso (Terza Università di Roma), LEAD Sándor Kovács (University of Washington), Martin Olsson (University of California, Berkeley)
    Moduli b

    This workshop will be focused on presenting the latest developments in moduli theory, including (but not restricted to) recent advances in compactifications of moduli spaces of higher dimensional varieties, the birational geometry of moduli spaces, abstract methods including stacks, stability criteria, and applications in other disciplines. 

    Updated on May 09, 2019 01:26 PM PDT
  17. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  18. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  19. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  20. Workshop 2019 Spring Opportunities Workshop

    Organizers: Brianna Donaldson (AIM - American Institute of Mathematics), Leslie Hogben, Michael Young (Iowa State University)

    GOAL: To highlight careers and opportunities in the mathematical sciences, and to prepare women
    and underrepresented minorities for work in academia, industry, and government laboratories.

    Updated on Mar 08, 2019 11:08 AM PST
  21. Seminar Chromatic DAG Seminar:

    Created on Mar 12, 2019 09:16 AM PDT
  22. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  23. Workshop Hot Topics: Recent progress in Langlands Program

    Organizers: Mark Kisin (Harvard University), Elena Mantovan (California Institute of Technology), LEAD Xinwen Zhu (California Institute of Technology)

    The purpose of the workshop is to explain Vincent Lafforgue's ground breaking work, constructing the automorphic to Galois direction of the Langlands correspondence for function fields. There will also be a number of talks on more recent developments and related results.

    Updated on Apr 24, 2019 02:17 PM PDT
  24. Seminar DAG Seminar: TBA

    Updated on Mar 29, 2019 10:59 AM PDT
  25. Seminar Chromatic DAG Seminar:

    Created on Mar 12, 2019 09:16 AM PDT
  26. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  27. Workshop Derived algebraic geometry and its applications

    Organizers: Dennis Gaitsgory (Harvard University), David Nadler (University of California, Berkeley), LEAD Nick Rozenblyum (University of Chicago), Peter Scholze (Universität Bonn), Brooke Shipley (University of Illinois at Chicago)

    This workshop will bring together researchers at various frontiers, including arithmetic geometry, representation theory, mathematical physics, and homotopy theory, where derived algebraic geometry has had recent impact. The aim will be to explain the ideas and tools behind recent progress and to advertise appealing questions. A focus will be on moduli spaces, for example of principal bundles with decorations as arise in many settings, and their natural structures.    

    Updated on Apr 03, 2019 11:24 AM PDT
  28. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  29. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  30. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  31. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  32. Seminar Women at MSRI lunch

    Created on Feb 13, 2019 03:50 PM PST
  33. Seminar 5 minute talks

    Created on Feb 08, 2019 01:43 PM PST
  34. Seminar 5 minute talks

    Created on Feb 08, 2019 01:43 PM PST
  35. Workshop Introductory Workshop: Derived Algebraic Geometry and Birational Geometry and Moduli Spaces

    Organizers: Julie Bergner (University of Virginia), Bhargav Bhatt (University of Michigan), Christopher Hacon (University of Utah), LEAD Mircea Mustaţă (University of Michigan), Gabriele Vezzosi (Università di Firenze)
    Tuelle picture
    A picture of a singularity, courtesy of Herwig Hauser

    The workshop will survey several areas of algebraic geometry, providing an introduction to the two main programs hosted by MSRI in Spring 2019. It will consist of 7 expository mini-courses and 7 separate lectures, each given by top experts in the field. 

    The focus of the workshop will be the recent progress in derived algebraic geometry, birational geometry and moduli spaces. The lectures will be aimed at a wide audience including advanced graduate students and postdocs with a background in algebraic geometry.
     

    Updated on Feb 13, 2019 03:55 PM PST
  36. Workshop Connections for Women: Derived Algebraic Geometry, Birational Geometry and Moduli Spaces

    Organizers: Julie Bergner (University of Virginia), LEAD Antonella Grassi (University of Pennsylvania), Bianca Viray (University of Washington), Kirsten Wickelgren (Georgia Institute of Technology)
    Image
    Image created by Tristan Hübsch

    This workshop will be on different aspects of Algebraic Geometry relating Derived Algebraic Geometry and Birational Geometry. In particular the workshop will focus on connections to other branches of mathematics and open problems. There will be some colloquium style lectures as well as shorter research talks. The workshop is open to all.

    Updated on Jan 29, 2019 10:47 AM PST
  37. Program Derived Algebraic Geometry

    Organizers: Julie Bergner (University of Virginia), LEAD Bhargav Bhatt (University of Michigan), Dennis Gaitsgory (Harvard University), David Nadler (University of California, Berkeley), Nick Rozenblyum (University of Chicago), Peter Scholze (Universität Bonn), Gabriele Vezzosi (Università di Firenze)
    Image
    Courtesy of G. Karapet

    Derived algebraic geometry is an extension of algebraic geometry that provides a convenient framework for directly treating non-generic geometric situations (such as non-transverse intersections in intersection theory), in lieu of the more traditional perturbative approaches (such as the “moving” lemma). This direct approach, in addition to being conceptually satisfying, has the distinct advantage of preserving the symmetries of the situation, which makes it much more applicable. In particular, in recent years, such techniques have found applications in diverse areas of mathematics, ranging from arithmetic geometry, mathematical physics, geometric representation theory, and homotopy theory. This semester long program will be dedicated to exploring these directions further, and finding new connections.

    Updated on Jan 02, 2019 03:00 PM PST
  38. Program Birational Geometry and Moduli Spaces

    Organizers: Antonella Grassi (University of Pennsylvania), LEAD Christopher Hacon (University of Utah), Sándor Kovács (University of Washington), Mircea Mustaţă (University of Michigan), Martin Olsson (University of California, Berkeley)

    Birational Geometry and Moduli Spaces are two important areas of Algebraic Geometry that have recently witnessed a flurry of activity and substantial progress on many fundamental open questions. In this program we aim to  bring together key researchers in these and related areas to highlight the recent exciting progress and to explore future avenues of research.
     
    This program will focus on the following themes: Geometry and Derived Categories, Birational Algebraic Geometry, Moduli Spaces of Stable Varieties, Geometry in Characteristic p>0, and Applications of Algebraic Geometry: Elliptic Fibrations of Calabi-Yau Varieties in Geometry, Arithmetic and the Physics of String Theory

    Updated on Jan 31, 2017 07:46 PM PST
  39. Seminar Arnold Diffusion

    Created on Dec 05, 2018 03:17 PM PST
  40. Workshop Hamiltonian systems, from topology to applications through analysis II

    Organizers: Alessandra Celletti (Seconda Università di Roma "Tor Vergata''), Rafael de la Llave (Georgia Institute of Technology), Diego del-Castillo-Negrete (Oak Ridge National Laboratory), Lawrence Evans (University of California, Berkeley), LEAD Philip Morrison (University of Texas, Austin), Sergei Tabachnikov (Pennsylvania State University), Amie Wilkinson (University of Chicago)
    Web image
    An invariant set inhibiting transport in a two degree-of-freedom Hamiltonian system (courtesy J. D. Szezech)

    This is a main workshop of the program “Hamiltonian systems, from topology to applications through analysis.”  It  will feature current developments pertaining to finite and infinite-dimensional Hamiltonian systems, with a mix of rigorous theory and applications.  A broad range of topics will be included, e.g., existence of and transport about invariant sets (Arnold diffusion, KAM, etc.),  techniques for projection/reduction of infinite to finite systems, and the role of topological invariants in applications.

    Updated on Dec 14, 2018 12:29 PM PST
  41. Workshop 2018 Blackwell-Tapia Conference and Award Banquet

    The NSF Mathematical Sciences Institutes Diversity Committee hosts the 2018 Blackwell-Tapia Conference and Awards Ceremony. This is the ninth conference since 2000, held every other year, with the location rotating among NSF Mathematics Institutes. The conference and prize honors David Blackwell, the first African-American member of the National Academy of Science, and Richard Tapia, winner of the National Medal of Science in 2010, two seminal figures who inspired a generation of African-American, Native American and Latino/Latina students to pursue careers in mathematics. The Blackwell-Tapia Prize recognizes a mathematician who has contributed significantly to research in his or her area of expertise, and who has served as a role model for mathematical scientists and students from underrepresented minority groups, or has contributed in other significant ways to addressing the problem of underrepresentation of minorities in math.

    The 2018 recipient of the Blackwell-Tapia Prize is Dr. Ronald E. Mickens, the Distinguished Fuller E. Callaway Professor in the Department of Physics at Clark Atlanta University.

    The conference will include scientific talks, poster presentations, panel discussions, ample opportunities for networking, and the awarding of the Blackwell-Tapia Prize. Participants are invited from all career stages and will represent institutions of all sizes across the country, including Puerto Rico.

    Updated on May 08, 2018 12:46 PM PDT
  42. Workshop 2018 Modern Math Workshop

    Organizers: Hélène Barcelo (MSRI - Mathematical Sciences Research Institute), LEAD Elvan Ceyhan (SAMSI - Statistical and Applied Mathematical Sciences Institute), Leslie McClure (SAMSI - Statistical and Applied Mathematical Sciences Institute), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))

    The Mathematical Sciences Diversity Initiative holds a Modern Math Workshop (MMW) prior to the SACNAS National Conference each year. The 2018 MMW will be hosted by SAMSI at the Henry B. Gonzalez Convention Center, San Antonio, Texas on October 10th and 11th, 2018. This workshop is intended to encourage undergraduates, graduate students and recent PhDs from underrepresented minority groups to pursue careers in the mathematical sciences and build research and mentoring networks. The Modern Math Workshop is a pre-conference event at the SACNAS National Conference. The MMW includes a keynote lecture, mini-courses, research talks, a question and answer session and a reception.

    Updated on Mar 15, 2018 12:33 PM PDT
  43. Workshop Hamiltonian systems, from topology to applications through analysis I

    Organizers: Alessandra Celletti (Seconda Università di Roma "Tor Vergata''), Rafael de la Llave (Georgia Institute of Technology), Diego del-Castillo-Negrete (Oak Ridge National Laboratory), Lawrence Evans (University of California, Berkeley), LEAD Philip Morrison (University of Texas, Austin), Sergei Tabachnikov (Pennsylvania State University), Amie Wilkinson (University of Chicago)
    Web image
    Depiction of the standard nontwist map (courtesy of G.Miloshevich).

    This is a main workshop of the program “Hamiltonian systems, from topology to applications through analysis” and is a companion to the workshop next month (November 26-30).  Both workshops will feature current developments pertaining to finite and infinite-dimensional Hamiltonian systems, with a mix of rigorous theory and applications.  A broad range of topics will be included, e.g., existence of and transport about invariant sets (Arnold diffusion, KAM, etc.),  techniques for projection/reduction of infinite to finite systems, and the role of topological invariants in applications.

    Updated on Oct 15, 2018 12:28 PM PDT
  44. Workshop Hot Topics: Shape and Structure of Materials

    Organizers: Myfanwy Evans (TU Berlin), LEAD Frank Lutz (TU Berlin), Dmitriy Morozov (Lawrence Berkeley National Laboratory), James Sethian (University of California, Berkeley), Ileana Streinu (Smith College)
    Msri lbnl pic 3
    Tangled honeycomb networks | and the Advanced Light Source at LBNL

    The fascinating and complicated microstructures of materials that are now visible through advanced imaging techniques challenge the frontiers of characterisation and understanding. At the same time, developments in modern geometric and topological techniques are beginning to illuminate important features of material structures, while the microstructures themselves and the analysis and prediction of their macroscopic properties are inspiring new directions in pure and applied mathematics. In a collaboration with the Lawrence Berkeley National Laboratory (LBNL), this workshop aims at intensifying the interaction of mathematicians with material scientists, physicists and chemists on the structural description and design of materials.

    Updated on Oct 05, 2018 03:08 PM PDT
  45. Seminar Graduate Student Seminar

    Created on Sep 07, 2018 10:39 AM PDT
  46. Seminar Five Minute Talks

    Updated on Aug 24, 2018 09:08 AM PDT
  47. Seminar Five Minute Talks

    Updated on Aug 24, 2018 09:07 AM PDT
  48. Workshop Introductory Workshop: Hamiltonian systems, from topology to applications through analysis

    Organizers: Marie-Claude Arnaud (Université d'Avignon), Wilfrid Gangbo (University of California, Los Angeles), LEAD vadim kaloshin (University of Maryland), Robert Littlejohn (University of California, Berkeley), Philip Morrison (University of Texas, Austin)

    The introductory workshop will cover the large variety of topics of the semester: weak KAM theory, Mather theory, Hamilton-Jacobi equations, integrable systems and integrable planar billiards, instability formation for nearly integrable systems, celestial mechanics, billiards, spectral rigidity, Astrodynamics, motion of satellites, Plasma Physics, Accelerator Physics, Theoretical Chemistry, and Atomic Physics.

    The workshop will consist of approximately 18 lectures to introduce the main topics relevant to the semester. That will leave time for discussions and exchange between the participants.

    Updated on Oct 05, 2018 02:51 PM PDT
  49. Workshop Connections for Women: Hamiltonian Systems, from topology to applications through analysis

    Organizers: Marie-Claude Arnaud (Université d'Avignon), LEAD Basak Gurel (University of Central Florida), Tere Seara (Polytechnical University of Cataluña (Barcelona))
    330px std map 0.971635
    Representing the orbits of the standard map for K = 1.2

    This workshop will feature lectures on a variety of topics in Hamiltonian dynamics given by leading researchers in the area. The talks will focus on recent developments in subjects closely related to the program such as Arnold diffusion, celestial mechanics, Hamilton-Jacobi equations, KAM methods, Aubry-Mather theory and symplectic topological techniques, and on applications. The workshop is open to all mathematicians in areas related to the program.

    Updated on Dec 05, 2018 03:43 PM PST
  50. Program Hamiltonian systems, from topology to applications through analysis

    Organizers: Rafael de la Llave (Georgia Institute of Technology), LEAD Albert Fathi (Georgia Institute of Technology; École Normale Supérieure de Lyon), vadim kaloshin (University of Maryland), Robert Littlejohn (University of California, Berkeley), Philip Morrison (University of Texas, Austin), Tere Seara (Polytechnical University of Cataluña (Barcelona)), Sergei Tabachnikov (Pennsylvania State University), Amie Wilkinson (University of Chicago)

    The interdisciplinary nature of Hamiltonian systems is deeply ingrained in its history. Therefore the program will bring together the communities of mathematicians with the community of practitioners, mainly engineers, physicists, and theoretical chemists who use Hamiltonian systems daily. The program will cover not only the mathematical aspects of Hamiltonian systems but also their applications, mainly in space mechanics, physics and chemistry.

    The mathematical aspects comprise celestial mechanics, variational methods, relations with PDE, Arnold diffusion and computation. The applications concern celestial mechanics, astrodynamics, motion of satellites, plasma physics, accelerator physics, theoretical chemistry, and atomic physics.

    The goal of the program is to bring to the forefront both the theoretical aspects and the applications, by making available for applications the latest theoretical developments, and also by nurturing the theoretical mathematical aspects with new problems that come from concrete problems of applications.

    Updated on Aug 20, 2018 08:16 AM PDT
  51. Program Complementary Program 2018-19

    The Complementary Program has a limited number of memberships that are open to mathematicians whose interests are not closely related to the core programs; special consideration is given to mathematicians who are partners of an invited member of a core program. 

    Updated on Jun 03, 2019 10:25 AM PDT
  52. Summer Graduate School From Symplectic Geometry to Chaos

    Organizers: Marcel Guardia (Polytechnical University of Cataluña (Barcelona) ), vadim kaloshin (University of Maryland), Leonid Polterovich (Tel Aviv University)

    The purpose of the summer school is to introduce graduate students to state-of-the-art methods and results in Hamiltonian systems and symplectic geometry. We focus on recent developments on the study of chaotic motion in Hamiltonian systems and its applications to models in Celestial Mechanics.

    Updated on Jul 31, 2018 12:12 PM PDT
  53. Summer Graduate School Representations of High Dimensional Data

    Organizers: Blake Hunter (Microsoft), Deanna Needell (University of California, Los Angeles)
    Image

    In today's world, data is exploding at a faster rate than computer architectures can handle. This summer school will introduce students to modern and innovative mathematical techniques that address this phenomenon. Hands-on topics will include data mining, compression, classification, topic modeling, large-scale stochastic optimization, and more.

    Updated on Jul 19, 2018 11:45 AM PDT
  54. Summer Graduate School IAS/PCMI 2018: Harmonic Analysis

    Organizers: Carlos Kenig (University of Chicago), Fanghua Lin (New York University, Courant Institute), Svitlana Mayboroda (University of Minnesota, Twin Cities), Tatiana Toro (University of Washington)

    Harmonic analysis is a central field of mathematics with a number of applications to geometry, partial differential equations, probability, and number theory, as well as physics, biology, and engineering. The Graduate Summer School will feature mini-courses in geometric measure theory, homogenization, localization, free boundary problems, and partial differential equations as they apply to questions in or draw techniques from harmonic analysis. The goal of the program is to bring together students and researchers at all levels interested in these areas to share exciting recent developments in these subjects, stimulate further interactions, and inspire the new generation to pursue research in harmonic analysis and its applications.

    Updated on Jun 20, 2018 12:17 PM PDT
  55. Summer Graduate School Derived Categories

    Organizers: Nicolas Addington (University of Oregon), LEAD Alexander Polishchuk (University of Oregon)

    The goal of the school is to give an introduction to basic techniques for working with derived categories, with an emphasis on the derived categories of coherent sheaves on algebraic varieties. A particular goal will be to understand Orlov’s equivalence relating the derived category of a projective hypersurface with matrix factorizations of the corresponding polynomial.

    Updated on Jul 05, 2018 09:05 AM PDT
  56. Summer Graduate School H-principle

    Organizers: Emmy Murphy (Northwestern University), Takashi Tsuboi (University of Tokyo)
    072 04 small
    The image of a large sphere isometrically embedded into a small space through a C^1 embedding. (Attributions: E. Bartzos, V. Borrelli, R. Denis, F. Lazarus, D. Rohmer, B. Thibert)

    This two week summer school will introduce graduate students to the theory of h-principles.  After building up the theory from basic smooth topology, we will focus on more recent developments of the theory, particularly applications to symplectic and contact geometry, and foliation theory.

    Updated on Jun 20, 2018 12:17 PM PDT
  57. Summer Graduate School Mathematical Analysis of Behavior

    Organizers: Ann Hermundstad (Janelia Research Campus, HHMI), Vivek Jayaraman (Janelia Research Campus, HHMI), Eva Kanso (University of Southern California), L. Mahadevan (Harvard University)
    Image

    Explore Outstanding Phenomena in Animal Behavior

    Jointly hosted by Janelia and the Mathematical Sciences Research Institute (MSRI), this program will bring together 15-20 advanced PhD students with complementary expertise who are interested in working at the interface of mathematics and biology. Emphasis will be placed on linking behavior to neural dynamics and exploring the coupling between these processes and the natural sensory environment of the organism. The aim is to educate a new type of global scientist that will work collaboratively in tackling complex problems in cellular, circuit and behavioral biology by combining experimental and computational techniques with rigorous mathematics and physics.

    Updated on Jun 20, 2018 12:16 PM PDT
  58. MSRI-UP MSRI-UP 2018: The Mathematics of Data Science

    Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), LEAD Maria Franco (Queensborough Community College (CUNY); MSRI - Mathematical Sciences Research Institute), Rebecca Garcia (Sam Houston State University), David Uminsky (University of San Francisco), Suzanne Weekes (Worcester Polytechnic Institute)

    The MSRI-UP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.

    In 2018, MSRI-UP will focus on the core role of (linear) algebra in current research and application areas of Data Science ranging from unsupervised learning, clustering and networks, to algebraic signal processing and feature extraction, to the central role linear algebra plays in deep machine learning.  The research program will be led by Dr. David Uminsky, Associate Professor of Mathematics and Statistics at the University of San Francisco.

    Updated on Aug 02, 2018 09:47 AM PDT
  59. Program Summer Research for Women in Mathematics

    Organizers: Hélène Barcelo (MSRI - Mathematical Sciences Research Institute)

    See this LINK for the 2019 Summer Research for Women in Mathematics program.
     
    The purpose of the MSRI's program, Summer Research for Women in Mathematics, is to provide space and funds to groups of women mathematicians to work on a research project at MSRI. Research projects can arise from work initiated at a Women's Conference, or can be freestanding activities.

    Updated on Sep 11, 2018 01:32 PM PDT
  60. Summer Graduate School The ∂-Problem in the Twenty-First Century

    Organizers: Debraj Chakrabarti (Central Michigan University), Jeffery McNeal (Ohio State University)

    This Summer Graduate School will introduce students to the modern theory of the  inhomogeneous Cauchy-Riemann equation, the fundamental partial differential equation of Complex Analysis. This theory uses powerful tools of partial differential equations, differential geometry and functional analysis to obtain a refined understanding of holomorphic functions on complex manifolds. Besides students planning to work in complex analysis, this course will be valuable to those planning to study partial differential equations, complex differential and algebraic geometry, and operator theory. The exposition will be self-contained and the prerequisites will be kept at a minimum

    Updated on Jun 21, 2018 01:13 PM PDT
  61. Summer Graduate School Séminaire de Mathématiques Supérieures 2018: Derived Geometry and Higher Categorical Structures in Geometry and Physics

    Organizers: Anton Alekseev (Université de Genève), Ruxandra Moraru (University of Waterloo), Chenchang Zhu (Universität Göttingen)

    Higher categorical structures and homotopy methods have made significant influence on geometry in recent years. This summer school is aimed at transferring these ideas and fundamental technical tools to the next generation of mathematicians.

    The summer school will focus on the following four topics:  higher categorical structures in geometry, derived geometry, factorization algebras, and their application in physics.  There will be eight to ten mini courses on these topics, including mini courses led by Chirs Brav, Kevin Costello, Jacob Lurie, and Ezra Getzler. The prerequisites will be kept at a minimum, however, a introductory courses in differential geometry, algebraic topology and abstract algebra are recommended.

    Updated on Jun 20, 2018 12:16 PM PDT
  62. Workshop The 2018 Infinite Possibilities Conference

    Organizers: Alejandra Alvarado (U.S. Navy), Hélène Barcelo (MSRI - Mathematical Sciences Research Institute), Rebecca Garcia (Sam Houston State University), Katharine Gurski (Howard University), LEAD Lily Khadjavi (Loyola Marymount University), Candice Price (University of San Diego), Kimberly Sellers (Georgetown University), Talitha Washington (Howard University), Kimberly Weems (North Carolina Central University), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))
    Ipc logo alt

    The Infinite Possibilities Conference (IPC) is a national conference that is designed to promote, educate, encourage and support women of color interested in mathematics and statistics, as a step towards addressing the underrepresentation of African-Americans, Latinas, Native Americans, and Pacific Islanders in these fields. 

    IPC aims to:

    • fulfill a need for role models and community-building
    • provide greater access to information and resources for success in graduate school and beyond
    • raise awareness of factors that can support or impede underrepresented women in the mathematical sciences

    A unique gathering, the conference brings together participants from across the country, at all stages of education and career, for mentoring and mathematics.

    Updated on May 18, 2018 12:18 PM PDT
  63. Workshop Representations of Finite and Algebraic Groups

    Organizers: Robert Guralnick (University of Southern California), Alexander Kleshchev (University of Oregon), Gunter Malle (Universität Kaiserslautern), Gabriel Navarro (University of Valencia), LEAD Pham Tiep (Rutgers University)

    The workshop will bring together key researchers working in various areas of Group Representation Theory to strengthen the interaction and collaboration between them and to make further progress on a number of basic problems and conjectures in the field. Topics of the workshop include
    -- Global-local conjectures in the representation theory of finite groups
    -- Representations and cohomology of simple, algebraic and finite groups
    -- Connections to Lie theory and categorification, and
    -- Applications to group theory, number theory, algebraic geometry, and combinatorics.

    Updated on May 25, 2018 11:23 AM PDT
  64. Seminar EGN Open GW seminar:

    Created on Feb 05, 2018 03:55 PM PST
  65. Workshop Structures in Enumerative Geometry

    Organizers: Mina Aganagic (University of California, Berkeley), Jim Bryan (University of British Columbia), LEAD Davesh Maulik (Massachusetts Institute of Technology), Balazs Szendroi (University of Oxford), Richard Thomas (Imperial College, London)

    The purpose of the workshop is to bring together specialists to work on understanding the many-faceted mathematical structures underlying problems in enumerative geometry. Topics represented at the workshop will include: geometric representation theory, supersymmetric gauge theory, string theory, knot theory, and derived geometry, all of which have had a profound effect on the development of modern enumerative geometry.

    Updated on Jun 29, 2018 10:50 AM PDT
  66. Workshop Hot Topics: The Homological Conjectures

    Organizers: Bhargav Bhatt (University of Michigan), Srikanth Iyengar (University of Utah), Wieslawa Niziol (CNRS, Ecole Normale Superieure de Lyon), LEAD Anurag Singh (University of Utah)

    The homological conjectures in commutative algebra are a network of conjectures that have generated a tremendous amount of activity in the last 50 years. They had largely been resolved for commutative rings that contain a field, but, with the exception of some low dimensional cases, several remained open in mixed characteristic --- until recently, when Yves André announced a proof of Hochster's Direct Summand Conjecture. The progress comes from systematically applying Scholze's theory of perfectoid spaces, which had already shown its value by solving formidable problems in number theory and representation theory. One of the goals of the workshop is to cover the ingredients going into the proofs of the Direct Summand Conjecture.

    Updated on Mar 23, 2018 11:01 AM PDT
  67. Workshop Latinx in the Mathematical Sciences Conference 2018

    Organizers: Federico Ardila (San Francisco State University), Ricardo Cortez (Tulane University), Tatiana Toro (University of Washington), Mariel Vazquez (University of California, Davis)

    On March 8-10, 2018, IPAM will host a conference showcasing the achievements of Latinx in the mathematical sciences. The goal of the conference is to encourage Latinx to pursue careers in the mathematical sciences, to promote the advancement of Latinx currently in the discipline, to showcase research being conducted by Latinx at the forefront of their fields, and, finally, to build a community around shared academic interests. The conference will be held on the UCLA campus in Los Angeles, CA. It will begin at noon on Thursday, March 8.

    This conference is sponsored by the Mathematical Sciences Institutes Diversity Initiative, with funding from the National Science Foundation Division of Mathematical Sciences.

    Updated on Oct 23, 2017 04:53 PM PDT
  68. Seminar 5-Minute Talks

    Updated on Feb 08, 2018 01:48 PM PST
  69. Seminar 5-Minute Talks

    Updated on Feb 08, 2018 01:47 PM PST
  70. Seminar 5-Minute Talks

    Updated on Feb 08, 2018 01:47 PM PST
  71. Workshop Introductory Workshop: Group Representation Theory and Applications

    Organizers: Robert Guralnick (University of Southern California), Gunter Malle (Universität Kaiserslautern)

    The workshop will survey various important and active areas of the representation theory of finite and algebraic groups, and introduce the audience to several basic open problems in the area. It will consist of 6 series of 3 lectures each given by top experts in the field. The lectures are designed for a diverse audience and will be accessible to non-specialists and graduate students with some background in representation theory. Topics covered include Representation theory of algebraic groups, Decomposition numbers of finite groups of Lie type, Deligne-Lusztig theory,  Block theory, Categorification, and Local-global-conjectures.

    Updated on Feb 16, 2018 09:33 AM PST
  72. Workshop Connections for Women: Group Representation Theory and Applications

    Organizers: Karin Erdmann (University of Oxford), Julia Pevtsova (University of Washington)

    This intensive two day workshop will introduce graduate students and recent PhD’s to some current topics of research in Representation Theory. It will consists of a mixture of survey talks on the hot topics in the area given by leading experts and research talks by junior mathematicians covering subjects such as new developments in character theory, group cohomology, representations of Lie algebras and algebraic groups, geometric representation theory, and categorification. 

    This workshop is open to all mathematicians.

    Updated on Apr 10, 2018 10:49 AM PDT
  73. Workshop Introductory Workshop: Enumerative Geometry Beyond Numbers

    Organizers: Denis Auroux (University of California, Berkeley), LEAD Chiu-Chu Melissa Liu (Columbia University), Andrei Okounkov (Columbia University)

    This workshop will consist of expository mini-courses and lectures introducing various aspects of modern enumerative geometry, among which: enumeration via intersection theory on moduli spaces of curves or sheaves, including Gromov-Witten and Donaldson-Thomas invariants; motivic and K-theoretic refinement of these invariants; and categorical invariants (derived categories of coherent sheaves, Fukaya categories).

    Updated on Apr 06, 2018 01:03 PM PDT
  74. Workshop Connections for Women: Enumerative Geometry Beyond Numbers

    Organizers: Barbara Fantechi (International School for Advanced Studies (SISSA/ISAS)), LEAD Chiu-Chu Melissa Liu (Columbia University)

    This two-day workshop will provide an overview of significant developments and open problems in modern enumerative geometry, from the perspectives of both algebraic geometry and symplectic topology. 

    This workshop is open to all mathematicians.

    Updated on Jan 26, 2018 09:37 AM PST
  75. Program Group Representation Theory and Applications

    Organizers: Robert Guralnick (University of Southern California), Alexander Kleshchev (University of Oregon), Gunter Malle (Universität Kaiserslautern), Gabriel Navarro (University of Valencia), Julia Pevtsova (University of Washington), Raphael Rouquier (University of California, Los Angeles), LEAD Pham Tiep (Rutgers University)

    Group Representation Theory is a central area of Algebra, with important and deep connections to areas as varied as topology, algebraic geometry, number theory, Lie theory, homological algebra, and mathematical physics. Born more than a century ago, the area still abounds with basic problems and fundamental conjectures, some of which have been open for over five decades. Very recent breakthroughs have led to the hope that some of these conjectures can finally be settled. In turn, recent results in group representation theory have helped achieve substantial progress in a vast number of applications.

    The goal of the program is to investigate all these deep problems and the wealth of new results and directions, to obtain major progress in the area, and to explore further applications of group representation theory to other branches of mathematics.

    Updated on Jan 12, 2018 04:00 PM PST
  76. Program Enumerative Geometry Beyond Numbers

    Organizers: Mina Aganagic (University of California, Berkeley), Denis Auroux (University of California, Berkeley), Jim Bryan (University of British Columbia), LEAD Andrei Okounkov (Columbia University), Balazs Szendroi (University of Oxford)

    Traditional enumerative geometry asks certain questions to which the expected answer is a number: for instance, the number of lines incident with two points in the plane (1, Euclid), or the number of twisted cubic curves on a quintic threefold (317 206 375). It has however been recognized for some time that the numerics is often just the tip of the iceberg: a deeper exploration reveals interesting geometric, topological, representation-, or knot-theoretic structures. This semester-long program will be devoted to these hidden structures behind enumerative invariants, concentrating on the core fields where these questions start: algebraic and symplectic geometry.

    Updated on Jan 16, 2018 10:12 AM PST
  77. Workshop Women in Topology

    Organizers: Maria Basterra (University of New Hampshire), Kristine Bauer (University of Calgary), LEAD Kathryn Hess (École Polytechnique Fédérale de Lausanne (EPFL)), Brenda Johnson (Union College--Union University)

    The Women in Topology (WIT) network is an international group of female mathematicians interested in homotopy theory whose main goal is to increase the retention of women in the field by providing both unique collaborative research opportunities and mentorship between colleagues.  The MSRI WIT meeting will be organized as an afternoon of short talks from participants, followed by two days of open problem seminars and working groups designed to stimulate new collaborations, as well as to strengthen those already ongoing among the participants.

     

    Updated on Dec 11, 2017 10:39 AM PST
  78. Seminar GTC Graduate Seminar

    Created on Aug 18, 2017 11:45 AM PDT
  79. Seminar GTC Graduate Seminar

    Created on Aug 18, 2017 11:45 AM PDT
  80. Workshop Geometric functional analysis and applications

    Organizers: Franck Barthe (Université de Toulouse III (Paul Sabatier)), Rafal Latala (University of Warsaw), Emanuel Milman (Technion---Israel Institute of Technology), Assaf Naor (Princeton University), LEAD Gideon Schechtman (Weizmann Institute of Science)

    This is the main workshop of the program "Geometric functional analysis and applications". It will focus on the main topics of the program. These include: Convex geometry, Asymptotic geometric analysis, Interaction with computer science, Signal processing, Random matrix theory and other aspects of Probability.

    Updated on Apr 30, 2018 01:55 PM PDT
  81. Seminar Writing Seminar

    Created on Oct 04, 2017 03:29 PM PDT
  82. Workshop Bay Area Differential Geometry Seminar (BADGS) Fall 2017

    Organizers: David Bao (San Francisco State University), Joel Hass (University of California, Davis), David Hoffman (Stanford University), Rafe Mazzeo (Stanford University), Richard Montgomery (University of California, Santa Cruz)

    Description

    The Bay Area Differential Geometry Seminar meets 3 times each year and is a 1-day seminar on recent developments in differential geometry and geometric analysis, broadly interpreted. Typically, it runs from mid-morning until late afternoon, with 3-4 speakers. Lunch will be available and the final talk will be followed by dinner. Here is the seminar schedule with abstracts and other information: BADG October 2017-Berkeley, CA

    Updated on Oct 18, 2017 01:33 PM PDT
  83. Workshop Modern Math Workshop 2017

    Organizers: Hélène Barcelo (MSRI - Mathematical Sciences Research Institute), Leslie McClure (SAMSI - Statistical and Applied Mathematical Sciences Institute), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))

    As part of the Mathematical Sciences Collaborative Diversity Initiatives, nine mathematics institutes are pleased to offer their annual SACNAS pre-conference event, the 2017 Modern Math Workshop (MMW). The Modern Math Workshop is intended to encourage minority undergraduates to pursue careers in the mathematical sciences and to assist undergraduates, graduate students and recent PhDs in building their research networks. The Modern Math Workshop is part of the SACNAS National Conference; the workshop and the conference take place in the Salt Palace Convention Center in Salt Lake City, Utah. The MMW starts at 1:00 pm on Wednesday, October 18 with registration beginning at noon.

    Updated on Oct 12, 2017 02:36 PM PDT
  84. Workshop Geometric and topological combinatorics: Modern techniques and methods

    Organizers: Patricia Hersh (North Carolina State University), LEAD Victor Reiner (University of Minnesota Twin Cities), Bernd Sturmfels (University of California, Berkeley), Frank Vallentin (Universität zu Köln), Günter Ziegler (Freie Universität Berlin)

    This workshop will focus on the interaction between Combinatorics, Geometry and Topology, including recent developments and techniques in areas such as 

    -- polytopes and cell complexes,
    -- simplicial complexes and higher order graph theory,
    -- methods from equivariant topology and configuration spaces,
    -- geometric combinatorics in optimization and social choice theory,
    -- algebraic and algebro-geometric methods.

    Updated on May 25, 2018 01:29 PM PDT
  85. Seminar GTC Graduate Seminar

    Created on Aug 18, 2017 11:45 AM PDT
  86. Seminar 5-Minute Talks

    Created on Sep 01, 2017 01:52 PM PDT
  87. Seminar 5-Minute Talks

    Updated on Sep 08, 2017 04:46 PM PDT
  88. Seminar 5-Minute Talks

    Created on Sep 01, 2017 01:52 PM PDT
  89. Workshop Introductory Workshop: Geometric and Topological Combinatorics

    Organizers: Imre Barany (Alfréd Rényi Institute of Mathematics), Anders Björner (Royal Institute of Technology (KTH)), LEAD Benjamin Braun (University of Kentucky), Isabella Novik (University of Washington), Francis Su (Harvey Mudd College), Rekha Thomas (University of Washington)

    The introductory workshop will present the main topics that will be the subject of much of the Geometric and Topological Combinatorics Program at MSRI.  Key areas of interest are point configurations and matroids, hyperplane and subspace arrangements, polytopes and polyhedra, lattices, convex bodies, and sphere packings. This workshop will consist of introductory talks on a variety of topics, intended for a broad audience. 

    Updated on May 01, 2018 10:00 AM PDT
  90. Workshop Connections for Women Workshop: Geometric and Topological Combinatorics

    Organizers: Federico Ardila (San Francisco State University), Margaret Bayer (University of Kansas), Francisco Santos Leal (University of Cantabria), LEAD Cynthia Vinzant (North Carolina State University)

    This workshop will feature lectures on a variety of topics in geometric and topological combinatorics, given by prominent women and men in the field. It precedes the introductory workshop and will preview the major research themes of the semester program. There will be a panel discussion focusing on issues particularly relevant to junior researchers, women, and minorities, as well as other social events. This workshop is open to all mathematicians.

    Updated on Sep 06, 2017 08:32 AM PDT
  91. Seminar GFA Organizers Meeting

    Created on Aug 22, 2017 01:25 PM PDT
  92. Workshop Introductory Workshop: phenomena in high dimensions

    Organizers: LEAD Alexander Koldobsky (University of Missouri), Michel Ledoux (Institut de Mathématiques de Toulouse), Monika Ludwig (Technische Universität Wien), Alain Pajor (Université de Paris Est Marne-la-Vallée), Stanislaw Szarek (Case Western Reserve University), Roman Vershynin (University of Michigan)

    This workshop will consist of several short courses related to high dimensional convex geometry, high dimensional probability, and applications in data science. The lectures will be accessible for graduate students.

    Updated on Sep 05, 2017 11:18 AM PDT
  93. Workshop Connections for Women: geometry and probability in high dimensions

    Organizers: LEAD Shiri Artstein (Tel Aviv University), Marianna Csornyei (University of Chicago), Eva Kopecka (Leopold-Franzens Universität Innsbruck), Elisabeth Werner (Case Western Reserve University)

    This workshop will be on topics connected with Asymptotic Geometric Analysis - a relatively new field, the young finite dimensional cousin of Banach Space theory, functional analysis and classical convexity. We study high, but finite, dimensional objects, where the disorder of many parameters and many dimensions is regularized by convexity assumptions.  This workshop is open to all mathematicians.

    Updated on Aug 29, 2017 10:40 AM PDT
  94. Program Geometric Functional Analysis and Applications

    Organizers: Franck Barthe (Université de Toulouse III (Paul Sabatier)), Marianna Csornyei (University of Chicago), Boaz Klartag (Weizmann Institute of Science), Alexander Koldobsky (University of Missouri), Rafal Latala (University of Warsaw), LEAD Mark Rudelson (University of Michigan)

    Geometric functional analysis lies at the interface of convex geometry, functional analysis and probability. It has numerous applications ranging from geometry of numbers and random matrices in pure mathematics to geometric tomography and signal processing in engineering and numerical optimization and learning theory in computer science.

    One of the directions of the program is classical convex geometry, with emphasis on connections with geometric tomography, the study of geometric properties of convex bodies based on information about their sections and projections. Methods of harmonic analysis play an important role here. A closely related direction is asymptotic geometric analysis studying geometric properties of high dimensional objects and normed spaces, especially asymptotics of their quantitative parameters as dimension tends to infinity. The main tools here are concentration of measure and related probabilistic results. Ideas developed in geometric functional analysis have led to progress in several areas of applied mathematics and computer science, including compressed sensing and random matrix methods. These applications as well as the problems coming from computer science will be also emphasised in our program.

    Updated on Aug 23, 2017 03:38 PM PDT
  95. Program Geometric and Topological Combinatorics

    Organizers: Jesus De Loera (University of California, Davis), Victor Reiner (University of Minnesota Twin Cities), LEAD Francisco Santos Leal (University of Cantabria), Francis Su (Harvey Mudd College), Rekha Thomas (University of Washington), Günter Ziegler (Freie Universität Berlin)

    Combinatorics is one of the fastest growing areas in contemporary Mathematics, and much of this growth is due to the connections and interactions with other areas of Mathematics. This program is devoted to the very vibrant and active area of interaction between Combinatorics with Geometry and Topology. That is, we focus on (1) the study of the combinatorial properties or structure of geometric and topological objects and (2) the development of geometric and topological techniques to answer combinatorial problems.

    Key examples of geometric objects with intricate combinatorial structure are point configurations and matroids, hyperplane and subspace arrangements, polytopes and polyhedra, lattices, convex bodies, and sphere packings. Examples of topology in action answering combinatorial challenges are the by now classical Lovász’s solution of the Kneser conjecture, which yielded functorial approaches to graph coloring, and the  more recent, extensive topological machinery leading to breakthroughs on Tverberg-type problems.

    Updated on Aug 28, 2017 11:26 AM PDT
  96. Summer Graduate School Automorphic Forms and the Langlands Program

    Organizers: LEAD Kevin Buzzard (Imperial College, London)

    The summer school will be an introduction to the more algebraic aspects of the theory of automorphic forms and representations. One of the goals will be to understand the statements of the main conjectures in the Langlands programme. Another will be to gain a good working understanding of the fundamental definitions in the theory, such as principal series representations, the Satake isomorphism, and of course automorphic forms and representations for groups such as GL_n and its inner forms.

    Updated on Aug 04, 2017 11:02 AM PDT
  97. Summer Graduate School Nonlinear dispersive PDE, quantum many particle systems and the world between

    Organizers: Natasa Pavlovic (University of Texas, Austin), Gigliola Staffilani (Massachusetts Institute of Technology), Nikolaos Tzirakis (University of Illinois at Urbana-Champaign)

    The purpose of the summer school is to introduce graduate students to the recent developments in the area of dispersive partial differential equations (PDE), which have received a great deal of attention from mathematicians, in part due to ubiquitous applications to nonlinear optics, water wave theory and plasma physics.

    Recently remarkable progress has been made in understanding existence and uniqueness of solutions to nonlinear Schrodinger (NLS) and KdV equations, and properties of those solutions. We will outline the basic tools that were developed to address these questions. Also we will present some of recent results on derivation of NLS equations from quantum many particle systems and will discuss how methods developed to study the NLS can be relevant in the context of the derivation of this nonlinear equation.

    Updated on Sep 12, 2017 02:02 PM PDT
  98. Summer Graduate School Positivity Questions in Geometric Combinatorics

    Organizers: Eran Nevo (The Hebrew University of Jerusalem), Raman Sanyal (Johann Wolfgang Goethe-Universität Frankfurt)

    McMullen’s g-Conjecture from 1970 is a shining example of mathematical foresight that combined all results available at that time to conjure a complete characterization of face numbers of convex simple/simplicial polytopes. The key statement in its verification is that certain combinatorial numbers associated to geometric (or topological) objects are non-negative. The aim of this workshop is to introduce graduate students to selected contemporary topics in geometric combinatorics with an emphasis on positivity questions. It is fascinating that the dual notions of simple and simplicial polytopes lead to different but equally powerful algebraic frameworks to treat such questions. A key feature of the lectures will be the simultaneous development of these algebraic frameworks from complementary perspectives: combinatorial-topological and convex-geometric.  General concepts (such as Lefschetz elements, Hodge–Riemann–Minkowski inequalities) will be developed side-by-side, and analogies will be drawn to concepts in algebraic geometry, Fourier analysis, rigidity theory and measure theory. This allows for entry points for students with varying backgrounds.  The courses will be supplemented with guest lectures highlighting further connections to other fields.

    Updated on Jul 21, 2017 10:13 AM PDT
  99. Summer Graduate School Séminaire de Mathématiques Supérieures 2017: Contemporary Dynamical Systems

    Organizers: Sylvain Crovisier (Université de Paris VI (Pierre et Marie Curie)-Université de Paris XI (Paris-Sud)), LEAD Konstantin Khanin (University of Toronto), Andrés Navas Flores (University of Santiago de Chile), Christiane Rousseau (Université de Montréal), Marcelo Viana (Institute of Pure and Applied Mathematics (IMPA)), Amie Wilkinson (University of Chicago)

    The theory of dynamical systems has witnessed very significant developments in the last decades, includi​n​g the work of two 2014 Fields medalists, Artur Avila and Maryam Mirzakhani. ​The school will concentrate on the recent significant developments in the field of dynamical systems and present some of the present main streams of research. Two central themes will be those of partial hyperbolicity on one side, and rigidity, group actions and renormalization on the other side.​ ​Other themes will ​include homogeneous dynamics and geometry and dynamics on infinitely flat surfaces (both providing connections to the work of Maryam Mirzakhani), topological dynamics, thermodynamical formalism, singularities and bifurcations in analytic dynamical systems.  

    Updated on May 06, 2017 01:18 AM PDT
  100. Summer Graduate School Soergel Bimodules

    Organizers: LEAD Ben Elias (University of Oregon), Geordie Williamson (University of Sydney)

    We will give an introduction to categorical representation theory, focusing on the example of Soergel bimodules, which is a categorification of the Iwahori-Hecke algebra. We will give a comprehensive introduction to the "tool box" of modern (higher) representation theory: diagrammatics, homotopy categories, categorical diagonalization, module categories, Drinfeld center, algebraic Hodge theory.

    Updated on Jul 10, 2017 01:18 PM PDT
  101. MSRI-UP MSRI-UP 2017: Solving Systems of Polynomial Equations

    Organizers: LEAD Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Franco (Queensborough Community College (CUNY); MSRI - Mathematical Sciences Research Institute), Herbert Medina (University of Portland), J. Maurice Rojas (Texas A & M University), Suzanne Weekes (Worcester Polytechnic Institute)

    The MSRI-UP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.
    In 2017, MSRI-UP will focus on Solving Systems of Polynomial Equations, a topic at the heart of almost every computational problem in the physical and life sciences. We will pay special attention to complexity issues, highlighting connections with tropical geometry, number theory, and the P vs. NP problem. The research program will be led by Prof. J. Maurice Rojas of Texas A&M University.
    Students who have had a linear algebra course and a course in which they have had to write proofs are eligible to apply. Due to funding restrictions, only U.S. citizens and permanent residents may apply regardless of funding. Members of underrepresented groups are especially encouraged to apply.
     

    Updated on Jun 28, 2018 05:38 PM PDT
  102. Program Summer Research 2017

    Come spend time at MSRI in the summer! The Institute’s summer graduate schools and undergraduate program fill the lecture halls and some of the offices, but we have room for a modest number of visitors to come to do research singly or in small groups, while enjoying the excellent mathematical facilities, the great cultural opportunities of Berkeley, San Francisco and the Bay area, the gorgeous natural surroundings, and the cool weather.

    We can provide offices, library facilities and bus passes—unfortunately not financial support. Though the auditoria are largely occupied, there are blackboards and ends of halls, so 2-6 people could comfortably collaborate with one another. We especially encourage such groups to apply together.

    To make visits productive, we require at least a two-week commitment.  We strive for a wide mix of people, being sure to give special consideration to women, under-represented groups, and researchers from non-research universities. 

    Updated on May 31, 2018 12:40 PM PDT
  103. Summer Graduate School Subfactors: planar algebras, quantum symmetries, and random matrices

    Organizers: LEAD Scott Morrison (Australian National University), Emily Peters (Loyola University), Noah Snyder (Indiana University)

    Subfactor theory is a subject from operator algebras, with many surprising connections to other areas of mathematics. This summer school will be devoted to understanding the representation theory of subfactors, with a particular emphasis on connections to quantum symmetries, fusion categories, planar algebras, and random matrices

    Updated on Jun 20, 2017 03:34 PM PDT
  104. Workshop Career in Academia

    Organizers: Hélène Barcelo (MSRI - Mathematical Sciences Research Institute), Estelle Basor (AIM - American Institute of Mathematics), David Farmer (AIM - American Institute of Mathematics), Sally Koutsoliotas (Bucknell University)

    This workshop will focus on preparing each participant for a successful career as a mathematician at a college or university. Beginning with the hiring process, a thorough discussion of the various elements of the application packet will take place in the context of each participant's materials. Working individually with experienced faculty, participants will review and refine their cover letters, C.V., research, and teaching statements. This will be followed by activities related to the interview. The primary goals of the workshop are to develop an understanding of the hiring process from the institutions' perspective, to refine the application packet, to learn what to expect during the interview process (including the job talk), and to prepare for negotiating salary and start-up packages.

    Additional time will be spent on aspects of the pre-tenure years including the development of a research program, writing grant proposals, and mentoring research students. The three-day workshop will consist of one-on-one work with experienced mentors, small group discussions, critique of written materials, plenary sessions, and time for individual work and consultation.

    Updated on May 06, 2017 01:18 AM PDT
  105. Summer Graduate School Commutative Algebra and Related Topics

    Organizers: Shinobu Hikami (Okinawa Institute of Science and Technology), LEAD Shihoko Ishii (Tsinghua University), Kazuhiko Kurano (Meiji University), Ken-ichi Yoshida (Nihon University)

    The purpose of the school will be to introduce graduate students to foundational results in commutative algebra, with particular emphasis of the diversity of the related topics with commutative algebra. Some of these topics are developing remarkably in this decade and through learning those subjects the graduate students will be stimulated toward future research. 

    Updated on Jun 21, 2017 04:53 PM PDT
  106. Workshop Recent Developments in Harmonic Analysis

    Organizers: Michael Christ (University of California, Berkeley), Steven Hofmann (University of Missouri), LEAD Michael Lacey (Georgia Institute of Technology), Betsy Stovall (University of Wisconsin-Madison), Brian Street (University of Wisconsin-Madison)

    Topics for this workshop will be drawn from the main research directions of this conference, including:
    (1) Restriction, Kakeya, and geometric incidence problems 
    (2) Analysis on nonhomogenous spaces
    (3) Weighted estimates
    (4) Quantitative rectifiability and other topics in PDE

    Updated on May 26, 2017 12:27 PM PDT
  107. Workshop Recent developments in Analytic Number Theory

    Organizers: Tim Browning (University of Bristol), Chantal David (Concordia University), Kannan Soundararajan (Stanford University), LEAD Terence Tao (University of California, Los Angeles)

    This workshop will be focused on presenting the latest developments in analytic number theory, including (but not restricted to) recent advances in sieve theory, multiplicative number theory, exponential sums, arithmetic statistics, estimates on automorphic forms, and the Hardy-Littlewood circle method.

    Updated on Jun 05, 2017 10:26 AM PDT
  108. Workshop Bay Area Differential Geometry Seminar (BADGS) Spring 2017

    Organizers: David Bao (San Francisco State University), Joel Hass (University of California, Davis), David Hoffman (Stanford University), Rafe Mazzeo (Stanford University), Richard Montgomery (University of California, Santa Cruz)

    The Bay Area Differential Geometry Seminar meets 3 times each year and is a 1-day seminar on recent developments in differential geometry and geometric analysis, broadly interpreted. Typically, it runs from mid-morning until late afternoon, with 3-4 speakers. Lunch will be available and the final talk will be followed by dinner.

     

    Updated on May 06, 2017 01:18 AM PDT
  109. Workshop Hot Topics: Galois Theory of Periods and Applications

    Organizers: LEAD Francis Brown (All Souls College, University of Oxford), Clément Dupont (Université de Montpellier), Richard Hain (Duke University), Vadim Vologodskiy (Higher School of Economics)

    Periods are integrals of algebraic differential forms over algebraically-defined domains and are ubiquitous in mathematics and physics. A deep idea, originating with Grothendieck, is that there should be a Galois theory of periods. This general principle provides a unifying approach to several problems in the theory of motives, quantum groups and geometric group theory.  This conference will bring together leading experts around this subject and cover topics such as the theory of multiple zeta values, modular forms, and motivic fundamental groups.

    Updated on May 06, 2017 01:18 AM PDT
  110. Workshop Bay Area Differential Geometry Seminar (BADGS) Spring 2017

    Organizers: David Bao (San Francisco State University), Joel Hass (University of California, Davis), David Hoffman (Stanford University), Rafe Mazzeo (Stanford University), Richard Montgomery (University of California, Santa Cruz)

    The Bay Area Differential Geometry Seminar meets 3 times each year and is a 1-day seminar on recent developments in differential geometry and geometric analysis, broadly interpreted. Typically, it runs from mid-morning until late afternoon, with 3-4 speakers. Lunch will be available and the final talk will be followed by dinner.

    Updated on May 06, 2017 01:18 AM PDT
  111. Seminar Five-Minute Talk Series

    Created on Feb 07, 2017 10:22 AM PST
  112. Seminar Five-Minute Talk Series

    Updated on Feb 07, 2017 10:22 AM PST
  113. Seminar Five-Minute Talk Series

    Created on Feb 07, 2017 10:22 AM PST
  114. Workshop Introductory Workshop: Analytic Number Theory

    Organizers: Andrew Granville (Université de Montréal), LEAD Emmanuel Kowalski (ETH Zurich), Kaisa Matomäki (University of Turku), Philippe Michel (École Polytechnique Fédérale de Lausanne (EPFL))

    The introductory workshop will present, through short minicourses and introductory lectures, the main topics that will be the subject of much of the Analytic Number Theory Programme at MSRI. These topics include the theory of multiplicative functions, the theory of modular forms and L-functions, the circle method, sieve methods, and the theory of exponential sums over finite fields

    Updated on May 06, 2017 01:18 AM PDT
  115. Workshop Connections for Women: Analytic Number Theory

    Organizers: LEAD Chantal David (Concordia University), Kaisa Matomäki (University of Turku), Lillian Pierce (Duke University), Kannan Soundararajan (Stanford University), Terence Tao (University of California, Los Angeles)

    This workshop will consist of lectures on the current state of research in analytic number theory, given by prominent women and men in the field.  The workshop is open to all graduate students, post-docs, and researchers in areas related to the program; it will also include a panel discussion session among female researchers on career issues, as well as other social events

    Updated on May 06, 2017 01:18 AM PDT
  116. Workshop Introductory Workshop: Harmonic Analysis

    Organizers: Allan Greenleaf (University of Rochester), LEAD Michael Lacey (Georgia Institute of Technology), Svitlana Mayboroda (University of Minnesota, Twin Cities), Betsy Stovall (University of Wisconsin-Madison), Brian Street (University of Wisconsin-Madison)

    This week-long workshop will serve as an introduction for graduate students, postdocs, and other researchers to the main themes of the program.  It will feature accessible talks by a number of leading harmonic analysts, including several short courses on the core ideas and techniques in the field.  There will also be a problem session, to which all participants are encouraged to contribute. 

    Updated on May 06, 2017 01:18 AM PDT
  117. Workshop Connections for Women: Harmonic Analysis

    Organizers: Svitlana Mayboroda (University of Minnesota, Twin Cities), LEAD Betsy Stovall (University of Wisconsin-Madison)

    This workshop will highlight the work of several prominent women working in harmonic analysis, including some of the field's rising stars.  There will also be a panel discussion.  There will also be a contributed poster session.  This workshop is open to, and poster contributions are welcome from all mathematicians.

     

    Updated on May 06, 2017 01:18 AM PDT
  118. Program Analytic Number Theory

    Organizers: Chantal David (Concordia University), Andrew Granville (Université de Montréal), Emmanuel Kowalski (ETH Zurich), Philippe Michel (École Polytechnique Fédérale de Lausanne (EPFL)), Kannan Soundararajan (Stanford University), LEAD Terence Tao (University of California, Los Angeles)

    Analytic number theory, and its applications and interactions, are currently experiencing intensive progress, in sometimes unexpected directions. In recent years, many important classical questions have seen spectacular advances based on new techniques; conversely, methods developed in analytic number theory have led to the solution of striking problems in other fields.

    This program will not only give the leading researchers in the area further opportunities to work together, but more importantly give young people the occasion to learn about these topics, and to give them the tools to achieve the next breakthroughs.

    Updated on Jul 10, 2015 03:54 PM PDT
  119. Program Harmonic Analysis

    Organizers: LEAD Michael Christ (University of California, Berkeley), Allan Greenleaf (University of Rochester), Steven Hofmann (University of Missouri), LEAD Michael Lacey (Georgia Institute of Technology), Svitlana Mayboroda (University of Minnesota, Twin Cities), Betsy Stovall (University of Wisconsin-Madison), Brian Street (University of Wisconsin-Madison)

    The field of Harmonic Analysis dates back to the 19th century, and has its roots in the study of the decomposition of functions using Fourier series and the Fourier transform.  In recent decades, the subject has undergone a rapid diversification and expansion, though the decomposition of functions and operators into simpler parts remains a central tool and theme.  
     
    This program will bring together researchers representing the breadth of modern Harmonic Analysis and will seek to capitalize on and continue recent progress in four major directions:
         -Restriction, Kakeya, and Geometric Incidence Problems
         -Analysis on Nonhomogeneous Spaces
         -Weighted Norm Inequalities
         -Quantitative Rectifiability and Elliptic PDE.
    Many of these areas draw techniques from or have applications to other fields of mathematics, such as analytic number theory, partial differential equations, combinatorics, and geometric measure theory.  In particular, we expect a lively interaction with the concurrent program.  

    Updated on Aug 11, 2016 10:49 AM PDT
  120. Seminar Common Lunch

    Created on Dec 09, 2016 01:17 PM PST
  121. Workshop Amenability, coarse embeddability and fixed point properties

    Organizers: Goulnara Arzhantseva (University of Vienna), LEAD Cornelia Drutu (University of Oxford), Graham Niblo (University of Southampton), Piotr Nowak (Polish Academy of Sciences)

    The main theme of the workshop is the spectrum of analytic properties running from Kazhdan's property (T) at one end to von Neumann's amenability at the other, that forms a foundational organizing structure for infinite groups and spaces. These properties can be described both analytically, via unitary representation theory, and geometrically, using embedding properties for discrete spaces. Connections with probability and combinatorics will likewise be addressed during the meeting.

    Updated on May 06, 2017 01:18 AM PDT
  122. Workshop Insect Navigation

    Organizers: Larry Abbott (Columbia University), David Eisenbud (MSRI - Mathematical Sciences Research Institute), Mimi Koehl (University of California, Berkeley)

    A 3-day joint workshop of MSRI and Janelia Research Campus of the Howard Hughes Medical Institute

    Navigation in flies, mosquitos and ants is an interesting scientific problem that has considerable societal importance because of their role as disease vectors. This meeting will address two important aspects of navigation: 1) how are locations and orientations in space computed, represented and used in the insect brain, and 2) how do interactions between an organism and its environment affect its ability to navigate.

    Updated on May 06, 2017 01:18 AM PDT
  123. Workshop Bay Area Differential Geometry Seminar (BADGS) Winter 2016

    Organizers: David Bao (San Francisco State University), Joel Hass (University of California, Davis), LEAD David Hoffman (Stanford University), Rafe Mazzeo (Stanford University), Richard Montgomery (University of California, Santa Cruz)

    The Bay Area Differential Geometry Seminar meets 3 times each year and is a 1-day seminar on recent developments in differential geometry and geometric analysis, broadly interpreted. Typically, it runs from mid-morning until late afternoon, with 3-4 speakers. Lunch will be available and the final talk will be followed by dinner.

     

    Updated on May 06, 2017 01:18 AM PDT
  124. Seminar Common Lunch

    Created on Aug 25, 2016 01:53 PM PDT
  125. Seminar Expanders

    Created on Nov 21, 2016 10:20 AM PST
  126. Seminar Reading Group

    Created on Nov 16, 2016 10:24 AM PST
  127. Seminar Common Lunch

    Created on Aug 25, 2016 01:50 PM PDT
  128. Seminar Common Lunch

    Created on Aug 25, 2016 01:49 PM PDT
  129. Seminar Math on YouTube

    Created on Sep 13, 2016 09:50 AM PDT
  130. Seminar Common Lunch

    Created on Aug 25, 2016 01:48 PM PDT
  131. Seminar Common Lunch

    Created on Aug 25, 2016 01:47 PM PDT
  132. Seminar Common Lunch

    Created on Aug 25, 2016 01:46 PM PDT
  133. Workshop Groups acting on CAT(0) spaces

    Organizers: Ian Agol (University of California, Berkeley), Pierre-Emmanuel Caprace (Université Catholique de Louvain), Koji Fujiwara (Kyoto University), Alessandra Iozzi (ETH Zürich), LEAD Michah Sageev (Technion---Israel Institute of Technology)

    The theme of the workshop is algebraic, geometric and analytical aspects of groups that act by isometries on spaces of non-positive curvature known as CAT(0) spaces. The world of CAT(0) spaces includes classical spaces such as symmetric spaces and buildings, as well as more avant-garde arrivals, such as CAT(0) cube complex. The workshop will bring together researchers studying various aspects of such groups and spaces to discuss recent developments and chart new directions in the field. 

    Updated on May 06, 2017 01:18 AM PDT
  134. Seminar Common Lunch

    Created on Aug 25, 2016 01:44 PM PDT
  135. Seminar Job Market Panel

    Created on Sep 16, 2016 11:22 AM PDT
  136. Seminar Common Lunch

    Created on Aug 25, 2016 01:41 PM PDT
  137. Seminar Graduate Student Seminar

    Created on Aug 25, 2016 02:02 PM PDT
  138. Seminar Common Lunch

    Created on Aug 25, 2016 01:34 PM PDT
  139. Seminar MSRI Fall 5-Minute Talks

    Created on Aug 26, 2016 01:56 PM PDT
  140. Seminar Common Lunch

    Created on Aug 24, 2016 08:42 AM PDT
  141. Seminar Postdoc Mentor Meeting

    Created on Aug 26, 2016 01:49 PM PDT
  142. Workshop Introductory Workshop: Geometric Group Theory

    Organizers: Martin Bridson (University of Oxford), Benson Farb (University of Chicago), LEAD zlil sela (The Hebrew University of Jerusalem), Karen Vogtmann (University of Warwick)

    This will be an introductory workshop to the MSRI jumbo program Geometric Group Theory being held during the Fall Semester of 2016. The purpose of the workshop is to provide an overview of key areas of research to be covered in the program, including an introduction to open problems of current interest.

    Updated on May 06, 2017 01:18 AM PDT
  143. Workshop Connections for Women: Geometric Group Theory

    Organizers: LEAD Ruth Charney (Brandeis University), Indira Chatterji (Université Nice Sophia-Antipolis), Mark Feighn (Rutgers University), Talia Fernós (University of North Carolina)

    This three-day workshop will feature talks by six prominent female mathematicians on a wide range of topics in geometric group theory.  Each speaker will give two lectures, separated by a break-out session during which participants will meet in small groups to discuss ideas presented in the first lecture.   The workshop is open to all mathematicians. 

    Updated on May 06, 2017 01:18 AM PDT
  144. Program Geometric Group Theory

    Organizers: Ian Agol (University of California, Berkeley), Mladen Bestvina (University of Utah), Cornelia Drutu (University of Oxford), LEAD Mark Feighn (Rutgers University), Michah Sageev (Technion---Israel Institute of Technology), Karen Vogtmann (University of Warwick)

    The field of geometric group theory emerged from Gromov’s insight that even mathematical objects such as groups, which are defined completely in algebraic terms, can be profitably viewed as geometric objects and studied with geometric techniques Contemporary geometric group theory has broadened its scope considerably, but retains this basic philosophy of reformulating in geometric terms problems from diverse areas of mathematics and then solving them with a variety of tools. The growing list of areas where this general approach has been successful includes low-dimensional topology, the theory of manifolds, algebraic topology, complex dynamics, combinatorial group theory, algebra, logic, the study of various classical families of groups, Riemannian geometry and representation theory.


    The goals of this MSRI program are to bring together people from the various branches of the field in order to consolidate recent progress, chart new directions, and train the next generation of geometric group theorists.

    Updated on Aug 11, 2016 08:44 AM PDT
  145. Program Complementary Program (2016-17)

    The Complementary Program has a limited number of memberships that are open to mathematicians whose interests are not closely related to the core programs; special consideration is given to mathematicians who are partners of an invited member of a core program. 

    Updated on Apr 14, 2017 10:04 AM PDT
  146. Summer Graduate School Chip Firing and Tropical Curves

    Organizers: LEAD Matthew Baker (Georgia Institute of Technology), David Jensen (University of Kentucky), Sam Payne (University of Texas, Austin)

    Tropical geometry uses a combination of techniques from algebraic geometry, combinatorics, and convex polyhedral geometry to study degenerations of algebraic varieties; the simplest tropical objects are tropical curves, which one can think of as "shadows" of algebraic curves.  Linear equivalence of divisors on an abstract tropical curve is determined by a simple but rich combinatorial process called "chip firing", which was discovered independently in the discrete setting by physicists and graph theorists.  From a pedagogical point of view, one can view tropical curves as a combinatorial model for the highly analogous but more abstract theory of algebraic curves, but there is in fact much more to the story than this: one can use tropical curves and chip firing to prove theorems in algebraic geometry and number theory.  This field is relatively new, so participants will have the opportunity to start from scratch and still get a glimpse of the cutting edge in this active research area.

    Updated on May 06, 2017 01:18 AM PDT
  147. Summer Graduate School Electronic Structure Theory

    Organizers: LEAD Lin Lin (University of California, Berkeley), Jianfeng Lu (Duke University), James Sethian (University of California, Berkeley)

    Ab initio or first principle electronic structure theories, particularly represented by Kohn-Sham density functional theory (KS-DFT), have been developed into workhorse tools with a wide range of scientific applications in chemistry, physics, materials science, biology etc. What is needed are new techniques that greatly extend the applicability and versatility of these approaches. At the core, many of the challenges that need to be addressed are essentially mathematical. The purpose of the workshop is to provide graduate students a self-contained introduction to electronic structure theory, with particular emphasis on frontier topics in aspects of applied analysis and numerical methods. 

    Updated on May 06, 2017 01:18 AM PDT
  148. Summer Graduate School An Introduction to Character Theory and the McKay Conjecture

    Organizers: Robert Guralnick (University of Southern California), Pham Tiep (Rutgers University)

    Character Theory of Finite Groups provides one of the most powerful tools to study groups. In this course we will give a gentle introduction to basic results in the Character Theory, as well as some of the main conjectures in Group Representation Theory, with particular emphasis on the McKay Conjecture.

     

    Group Photo

    Updated on May 06, 2017 01:18 AM PDT
  149. Summer Graduate School Mixed Integer Nonlinear Programming: Theory, algorithms and applications

    Organizers: Francisco Castro (University of Sevilla), Elena Fernandez (Polytechnical University of Cataluña (Barcelona) ), Justo Puerto (University of Sevilla)

    This school is oriented to the presentation of theory, algorithms and applications for the solution of mixed integer nonlinear problems (MINLP). This type of problems appears in numerous application areas where the modelization of nonlinear phenomena with logical constraints is important; we must remember here the memorable phrase “the world is nonlinear”. Nowadays the theoretical aspects of this area are spread in a number of recent papers which makes it difficult, for non-specialist, to have a solid background of the existing results and new advances in the field. This school aims to organize and present this material in an organized way. Moreover, it also pursues to link theory with actual applications. In particular, remarkable applications can be found in air traffic control agencies, the air companies, the electric power generation companies, the chemical complex units, the analysis of financial products usually associated with risk dealing and in the algorithms in the statistical field and artificial intelligence as for instance artificial neural networks, or supporting vector machines, among many others.

    Updated on May 06, 2017 01:18 AM PDT
  150. Seminar Algebraic Vision

    Created on Jun 15, 2016 02:44 PM PDT
  151. Summer Graduate School Harmonic Analysis and Elliptic Equations on real Euclidean Spaces and on Rough Sets

    Organizers: LEAD Steven Hofmann (University of Missouri), Jose Maria Martell (Instituto de Ciencias Matematicas (ICMAT))

    The goal of the workshop is to present harmonic analysis techniques in $R^n$ (the ``flat" setting), and then to show how those techniques extend to much rougher settings, with application to the theory of elliptic equations. Thus, the subject matter of the workshop will introduce the students to an active, current research area:  the interface between harmonic analysis, elliptic PDE, and geometric measure theory.

    Group Photo

    Updated on May 06, 2017 01:18 AM PDT
  152. MSRI-UP MSRI-UP 2016: Sandpile Groups

    Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Franco (Queensborough Community College (CUNY); MSRI - Mathematical Sciences Research Institute), Luis Garcia Puente (Sam Houston State University), Herbert Medina (University of Portland), LEAD Suzanne Weekes (Worcester Polytechnic Institute)

    The MSRI-UP summer program is designed for undergraduate students who have completed two years of university-level mathematics courses and would like to conduct research in the mathematical sciences. Due to funding restrictions, only U.S. citizens and permanent residents are eligible to apply and the program cannot accept foreign students regardless of funding. The academic portion of the 2016 program will be led by Prof. Luis Garcia-Puente of Sam Houston State University.

    Updated on Aug 17, 2017 11:42 AM PDT
  153. Program Summer Research 2016

    Come spend time at MSRI in the summer! The Institute’s summer graduate schools and undergraduate program fill the lecture halls and some of the offices, but we have room for a modest number of visitors to come to do research singly or in small groups, while enjoying the excellent mathematical facilities, the great cultural opportunities of Berkeley, San Francisco and the Bay area, the gorgeous natural surroundings, and the cool weather.

    We can provide offices, library facilities and bus passes—unfortunately not financial support. Though the auditoria are largely occupied, there are blackboards and ends of halls, so 2-6 people could comfortably collaborate with one another. We especially encourage such groups to apply together.

    To make visits productive, we require at least a two-week commitment.  We strive for a wide mix of people, being sure to give special consideration to women, under-represented groups, and researchers from non-research universities.  

    Updated on Mar 22, 2016 11:58 AM PDT
  154. Summer Graduate School Seminaire de Mathematiques Superieures 2016: Dynamics of Biological Systems

    Organizers: Thomas Hillen (University of Alberta), Mark Lewis (University of Alberta), Yingfei Yi (University of Alberta)

    The purpose of this summer school is to focus on the interplay of dynamical and biological systems, developing the rich connectionbetween science and mathematics that has been so successful to date. Our focus will be on understanding the mathematical structure of dynamical systems that come from biological problems, and then relating the mathematical structures back to the biology to provide scientific insight. We will focus on five key areas: complex bio-networks, multi scale biological dynamics, biological waves, nonlinear dynamics of pattern formation, and disease dynamics. For each of the five key areas, we will invite 2-3 world leaders who are also excellent communicators to deliver a series of 2-4 one-hour lectures. We expect an average of eight hours of lecture per subject area, spread over approximately two weeks.

    Updated on May 06, 2017 01:18 AM PDT