Logo

Mathematical Sciences Research Institute

Home > Scientific > Programs > Upcoming Programs

Upcoming Programs

  1. Random and Arithmetic Structures in Topology

    Organizers: Nicolas Bergeron (École Normale Supérieure), Jeffrey Brock (Yale University), Alexander Furman (University of Illinois at Chicago), Yizhaq Gelander (Weizmann Institute of Science), Ursula Hamenstädt (Rheinische Friedrich-Wilhelms-Universität Bonn), Fanny Kassel (Institut des Hautes Études Scientifiques (IHES)), LEAD Alan Reid (Rice University)
    Msri image

    The use of dynamical invariants has long been a staple of geometry and topology, from rigidity theorems, to classification theorems, to the general study of lattices and of the mapping class group. More recently, random structures in topology and notions of probabilistic geometric convergence have played a critical role in testing the robustness of conjectures in the arithmetic setting. The program will focus on invariants in topology, geometry, and the dynamics of group actions linked to random constructions.

    Updated on Apr 22, 2019 01:56 PM PDT
  2. Decidability, definability and computability in number theory

    Organizers: Valentina Harizanov (George Washington University), Maryanthe Malliaris (University of Chicago), Barry Mazur (Harvard University), Russell Miller (Queens College, CUNY; CUNY, Graduate Center), Jonathan Pila (University of Oxford), LEAD Thomas Scanlon (University of California, Berkeley), Alexandra Shlapentokh (East Carolina University), Carlos Videla (Mount Royal University)

    This program is focused on the two-way interaction of logical ideas and techniques, such as definability from model theory and decidability from computability theory, with fundamental problems in number theory. These include analogues of Hilbert's tenth problem, isolating properties of fields of algebraic numbers which relate to undecidability, decision problems around linear recurrence and algebraic differential equations, the relation of transcendence results and conjectures to decidability and decision problems, and some problems in anabelian geometry and field arithmetic. We are interested in this specific interface across a range of problems and so intend to build a semester which is both more topically focused and more mathematically broad than a typical MSRI program.

    Updated on Oct 03, 2019 03:52 PM PDT
  3. Complementary Program 2020-21

    The Complementary Program has a limited number of memberships that are open to mathematicians whose interests are not closely related to the core programs; special consideration is given to mathematicians who are partners of an invited member of a core program.

    Updated on Nov 20, 2019 01:47 PM PST
  4. Mathematical problems in fluid dynamics

    Organizers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS)), Hajer Bahouri (Université Paris-Est Créteil Val-de-Marne; Centre National de la Recherche Scientifique (CNRS)), Mihaela Ifrim (University of Wisconsin-Madison), Igor Kukavica (University of Southern California), David Lannes (Université de Bordeaux I; Centre National de la Recherche Scientifique (CNRS)), LEAD Daniel Tataru (University of California, Berkeley)
    Barcuta

    Fluid dynamics is one of the classical areas of partial differential equations, and has been the subject of extensive research over hundreds of years. It is perhaps one of the most challenging and exciting fields of scientific pursuit simply because of the complexity of the subject and the endless breadth of applications.

    The focus of the program is on incompressible fluids, where water is a primary example. The fundamental equations in this area are the well-known Euler equations for inviscid fluids, and the Navier-Stokes equations for the viscous fluids. Relating the two is the problem of the zero viscosity limit, and its connection to the phenomena of turbulence. Water waves, or more generally interface problems in fluids, represent another target area for the program. Both theoretical and numerical aspects will be considered.

    Updated on Apr 25, 2019 02:32 PM PDT
  5. Universality and Integrability in Random Matrix Theory and Interacting Particle Systems

    Organizers: LEAD Ivan Corwin (Columbia University), Percy Deift (New York University, Courant Institute), Ioana Dumitriu (University of Washington), Alice Guionnet (École Normale Supérieure de Lyon), Alexander Its (Indiana University-Purdue University Indianapolis), Herbert Spohn (Technische Universität München), Horng-Tzer Yau (Harvard University)
    Image

    The past decade has seen tremendous progress in understanding the behavior of large random matrices and interacting particle systems. Complementary methods have emerged to prove universality of these behaviors, as well as to probe their precise nature using integrable, or exactly solvable models. This program seeks to reinforce and expand the fruitful interaction at the interface of these areas, as well as to showcase some of the important developments and applications of the past decade.

    Updated on Apr 24, 2019 03:08 PM PDT
  6. The Analysis and Geometry of Random Spaces

    Organizers: LEAD Mario Bonk (University of California, Los Angeles), Joan Lind (University of Tennessee), Steffen Rohde (University of Washington), Eero Saksman (University of Helsinki), Fredrik Viklund (Royal Institute of Technology), Jang-Mei Wu (University of Illinois at Urbana-Champaign)
    Graphisc

    This program is devoted to the investigation of universal analytic and geometric objects that arise from natural probabilistic constructions, often motivated by models in mathematical physics. Prominent examples for recent developments are the Schramm-Loewner evolution, the continuum random tree, Bernoulli percolation on the integers,  random surfaces produced by Liouville Quantum Gravity, and Jordan curves and dendrites obtained from random conformal weldings and laminations. The lack of regularity of these random structures often results in a failure of classical methods of analysis. One goal of this program is to enrich the analytic toolbox to better handle these rough structures.

    Updated on Nov 20, 2019 02:12 PM PST
  7. Complex Dynamics: from special families to natural generalizations in one and several variables

    Organizers: LEAD Sarah Koch (University of Michigan), Jasmin Raissy (Institut de Mathématiques de Toulouse), Dierk Schleicher (Jacobs University Bremen), Mitsuhiro Shishikura (Kyoto University), Dylan Thurston (Indiana University)
    Image
    The mating of these two dendritic Julia sets is equal to the Julia set of a rational map of degree 2; that Julia set is equal to the entire Riemann sphere.

    Holomorphic dynamics is a vibrant field of mathematics that has seen profound progress over the past 40 years. It has numerous interconnections to other fields of mathematics and beyond. 

    Our semester will focus on three selected classes of dynamical systems: rational maps (postcritically finite and beyond); transcendental maps; and maps in several complex variables. We will put particular emphasis on the interactions between each these, and on connections with adjacent areas of mathematics. 

    Updated on Nov 20, 2019 02:12 PM PST
  8. Floer Homotopy Theory

    Organizers: Mohammed Abouzaid (Columbia University), Andrew Blumberg (University of Texas, Austin), Kristen Hendricks (Rutgers University), Robert Lipshitz (University of Oregon), LEAD Ciprian Manolescu (Stanford University), Nathalie Wahl (University of Copenhagen)
    335 image
    Illustrated by Nathalie Wahl

    The development of Floer theory in its early years can be seen as a parallel to the emergence of algebraic topology in the first half of the 20th century, going from counting invariants to homology groups, and beyond that to the construction of algebraic structures on these homology groups and their underlying chain complexes.  In continuing work that started in the latter part of the 20th century, algebraic topologists and homotopy theorists have developed deep methods for refining these constructions, motivated in large part by the application of understanding the classification of manifolds. The goal of this program is to relate these developments to Floer theory with the dual aims of (i) making progress in understanding symplectic and low-dimensional topology, and (ii) providing a new set of geometrically motivated questions in homotopy theory. 

    Updated on Nov 25, 2019 01:27 PM PST