\[S = k[x_0, \ldots, x_r] = \text{Sym}_W W \]
\[E = \Lambda(W^*) \quad \text{exterior algebra} = \Lambda^e \left(x_0, \ldots, x_r \right) \]
\[\text{Prop} \quad \text{Linear free } S\text{-complexes} \cong \text{graded } E\text{-modules} \]
\[\text{Graded } S\text{-modules} \cong \text{linear free } E\text{-complexes} \]

Sand E are Koszul dual algebras.

\[x_i \text{'s have deg } 1, \text{ so functionals in } W^* \text{ have deg } -1 \]

\[P \text{ a graded } E\text{-module } P = \oplus P_i \]

\[\cdots \rightarrow S^1 \otimes P_i \rightarrow S^1 \otimes P_{i-1} \rightarrow S^1 \otimes P_{i-2} \rightarrow \cdots \]

\[\sum_{j} x_j \otimes \varepsilon_j p \rightarrow \sum_{j} x_j y_j \otimes \varepsilon_j p \]

So this is a differential, using commutativity in S & associativity & anticommutativity in E.
Ruchira Datta MSRI Comm. Alg. Workshop Notes

$M = \bigoplus M_i$, an S-module.$\quad \Rightarrow \quad \text{IR}(M) \rightarrow E \otimes M_i \rightarrow E \otimes M_i \rightarrow \cdots$

write $P = \text{Hom}_k(P, k)$; say P a f.g. graded E-module.

Prop 1) $L = L(P)$ is a subcomplex of the linear strand of a minimal free resolution.

$\iff \hat{P}$ is finitely generated in degree 0,

(by \hat{P}_0).

$S \otimes \hat{P}_i \rightarrow \cdots \rightarrow S \otimes \hat{P}_0$

2) $L = L(P)$ is the linear strand of a minimal free res

$\iff \hat{P}$ is linearly presented.

$E_1 \rightarrow E_0 \rightarrow \hat{P}$

3) $L = L(P)$ is a free resolution $\iff \hat{P}$ has a linear free res.

(*) $\text{Hi}(L(P))_{tt} = \text{Tor}_d^E(\hat{P}, k)_{t-d}

The case $P = E$ is just the Koszul complex.

$\text{IR}(S) = \quad E \rightarrow E \otimes W \rightarrow E \otimes \text{Sym}_2 W \rightarrow \cdots$

is the injective resolution of $\text{Kas} \, E$-module.

this is the Cartan resolution.

cf. Cartan-Eilenberg

in general, for any graded E-module M,

$\text{IR}(M)$ is exact starting at $\text{reg} \, M$

the Castelnuovo-Mumford regularity of M.
Ruchira Dutta MSRI Comm Alg Workshop Notes

Given a finitely generated graded S-module M, what's the length of the linear strand of the minimal resolution of M? How long could it be?

Example 1. If M has 1 generator \(m \),
then the length is \(\dim \text{soc} Wm = 0^3 = A_0 \).

Example 2.
\[
S^l(-1) \rightarrow S^2 \rightarrow N \rightarrow 0
\]
\[
S = NS^l(1) \oplus \text{Sym}_0 S^2 \rightarrow \cdots \rightarrow NS^{l-2} \oplus \text{Sym}_{l-2} S^2
\]
\[
S^{l-1}(1) \oplus \text{Sym}_{l-1} S^2 \rightarrow \text{Sym}_1 S^2 \rightarrow M = \text{Sym}_l N \rightarrow 0
\]
has resolution of length \(l \).

Check: case \(l = 2 \): \(0 \rightarrow NS^{2-1} \rightarrow S^{l-1} \oplus S^{l-2} \rightarrow \text{Sym}_2 S^2 \)

No element of M is annihilated by a linear form.
M has \(l+1 \) generators.

Let M be graded, \(M = M_0 \oplus M_1 \oplus \cdots \), \(M_0 \neq 0 \).

\(A(M) = \{ x, \langle m \rangle \in W \times \mathcal{P}(M_0) \text{ s.t. } x m = 0^3 \} \).

In Example 1: \(\text{ann}_W (m) \neq \langle m \rangle \)
with dimension = dim annihilator.

In Example 2: \(0 \times \mathcal{P}(M_0) \) has dim 1.

Theorem (Mark Green)
\(\dim A(M) \geq \) length of linear strand of resolution of M.
Ruchira Datta MSRI Comm. Alg. Workshop Notes
other stronger conjectures are in
Eisenbud & Koh, 1991

suppose have linear \(S \otimes P_i \rightarrow S \otimes P_i \)
\(P_i \rightarrow W \otimes P_{i-1} \leftarrow V \otimes P_i \rightarrow P_{i-1} \)

Let \(L = \text{linear strand} = \Omega L(e) \)
\(\mathcal{P} \) is linearly presented \(E^b(l) \rightarrow E^a \rightarrow \mathcal{P} \rightarrow \mathcal{O} \)
\(L \) has length \(< \dim \mathcal{A}(M) \)
\(\iff (V) \dim \mathcal{A}(M) + 1 \mathcal{P} = \mathcal{O} \)

annihilates - must show

(1) find elements that annihilate a module

(2) show you found a lot

- try \(\mathcal{P} \) is annihilated by the "exterior minors"

(Fitting ideal) of \(\mathcal{P} \)

Case \(b = 1 \) local presentation:
\[
\begin{align*}
E(1) & \rightarrow E^a \rightarrow \mathcal{P} \rightarrow \mathcal{O} \\
\epsilon_i & \in \mathcal{P} \quad \left(\begin{array}{c} \epsilon_i \\ \epsilon_a \end{array} \right) \\
\sum \epsilon_i p_i = 0 \\
\text{The } \epsilon_i \text{ annihilates: permanent of mtx obtained by repeating } (\epsilon_a) \text{ sufficiently.}
\end{align*}
\]

\[
(l_1 \cdots l_k) p_i = \sum_{j \leq l} \epsilon_i p_i = 2 (T l e_j) \sum \epsilon_j p_j = 0.
\]