NOTETAKER CHECKLIST FORM

(Complete one for each talk.)

Name: Van C. Nguyen Email/Phone: van.nguyen3@msri.org

Speaker's Name: Catharina Stroppel

Talk Title: Kazhdan-Lusztig polynomials, geometry and categorification

Date: 01/24/13 Time: 1:30 am (circle one)

List 6-12 key words for the talk: Kazhdan-Lusztig polynomials, KL basis, Hecke algebras, Verma modules

Please summarize the lecture in 5 or fewer sentences: Define Kazhdan-Lusztig polynomials and discuss their appearance in representation and geometry. Illustrate their role in commutative geometry (Soergel) and noncommutative (KL, Soergel), and in the concept of categorification.

CHECK LIST

(This is NOT optional, we will not pay for incomplete forms)

☑ Introduce yourself to the speaker prior to the talk. Tell them that you will be the note taker, and that you will need to make copies of their notes and materials, if any.

☑ Obtain ALL presentation materials from speaker. This can be done before the talk is to begin or after the talk; please make arrangements with the speaker as to when you can do this. You may scan and send materials as a .pdf to yourself using the scanner on the 3rd floor.
 - Computer Presentations: Obtain a copy of their presentation
 - Overhead: Obtain a copy or use the originals and scan them
 - Blackboard: Take blackboard notes in black or blue PEN. We will NOT accept notes in pencil or in colored ink other than black or blue.
 - Handouts: Obtain copies of and scan all handouts

☒ For each talk, all materials must be saved in a single .pdf and named according to the naming convention on the "Materials Received" check list. To do this, compile all materials for a specific talk into one stack with this completed sheet on top and insert face up into the tray on the top of the scanner. Proceed to scan and email the file to yourself. Do this for the materials from each talk.

☒ When you have emailed all files to yourself, please save and re-name each file according to the naming convention listed below the talk title on the "Materials Received" check list.
 (YYYY.MM.DD.TIME.Speaker.LastName)

☒ Email the re-named files to notes@msri.org with the workshop name and your name in the subject line.
Catharina Stroppel: "Kazhdan–Lusztig polynomials, geometry and categorification."

Classical problem: \(\mathfrak{g} \) semisimple, reducible complex Lie algebra

\(\mathfrak{u} \) parabolic

\(\mathfrak{l} \) Levi

Example: \(\mathfrak{g} = \mathfrak{gl}_n(\mathbb{C}) \)

\(V \) is irreducible \(\mathfrak{l} \)-module

\(\mathfrak{u}(\mathfrak{g}) \otimes_{\mathfrak{u}(\mathfrak{p})} V = \Delta(V) \)

generalized Verma module

Structure?

Special case: \(\rho = \mathfrak{c} = \left(\begin{array}{c} \square \\ \square \\ \square \end{array} \right) \)

\(\mathfrak{u}(\mathfrak{g}) \otimes_{\mathfrak{u}(\mathfrak{p})} C_{\lambda} = \text{ordinary Verma module} \)

Usual approach: \(\rightarrow \) geometry (\(D \)-modules/perv. sheaves)

Problem: No classification of \(V \)'s! Annihilators are

And composition factors might have infinite multiplicative

or infinitely many (\(\rightarrow \) examples of Stafford)

Do new (categorification) techniques help?

Now: \((W, S)\) Coxeter group

In this talk, \(W = S_n \)

\[\mathbb{Z}[W] \longrightarrow \mathcal{H} = \mathcal{H}(W, S) \text{ Hecke algebra over } \mathbb{Z}[q, q^{-1}] \]
generators: $H_{s_i}, s_i \in S$

relations: $H_{s_i}H_{s_j} = H_{s_j}H_{s_i}$ for $|i-j| > 1$

$H_{s_i}H_{s_{i+1}}H_{s_i} = H_{s_{i+1}}H_{s_i}H_{s_{i+1}}$

$H_{s_i}^2 = 1 + (q^{-1} - q)H_{s_i}$ (in particular H_x def. $\forall x \in \omega$)

Have nontrivial involution $\psi: H_{s_i} \rightarrow H_{s_i}^{-1}$

$q \rightarrow q^{-1}$

Theorem (Kazhdan-Lusztig '79):

$\forall x \in \omega, \exists! H_x$ s.t. $\psi(H_x) = H_{\bar{x}}$

$H_x \in H_x + \sum_{y \prec x} q^{-1} \mathbb{Z}[q]H_y$

KL-basis elements, KL-polynomials $p_{x,y}(q)$

$\text{ex: } H_e = 1$

$H_{s_i} = H_{s_i} + q$

Facts, no closed formula (except of small cases)

extends to KL-basis of induced modules

$W^f = \mathcal{X}(\omega) \otimes_{\mathcal{B}(\omega_f)} \mathfrak{S}_n$

Explicit formulas for $\omega_f = S_i \times S_{n-i}$ (sgn)

Standard basis \(\omega_f \otimes (W/W_f)\) short \(\frac{\epsilon}{n-ivs}\) \(\psi\) \(w \mapsto w(\underbrace{\ldots \ldots \ldots \ldots \ldots}_{n-i})\)
KL-basis \leftrightarrow cup diagram associated with the sequence with
max. # of anticlockwise cups

\[N_x \leftrightarrow N_x \]

\[\text{eq. } N_y \uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \uparrow \uparrow \]

\[P_{x,y}(q) = \begin{cases} q^c, & \text{c # clockwise cups} \\ 0, & \text{if } N_y, N_x \text{ not oriented} \end{cases} \]

\rightarrow basic fact why Khovanov homology

Interpretation in terms of commutative geometry (Saergel)

\[W \hookrightarrow V = \mathbb{C}^n \]

\[S = S(V^x), \quad x \in W \rightarrow \text{coherent sheaf on } V_x V \]

\[= \text{regular functions on } \{ (x, v) \mid v \in V^{P_x} = S^x \} \]

\[S_i \sim B_{s_i} := S \otimes_{S^{x_i}} S \quad (\text{filter by } S, S^{x_i}) \]

Theorem (Saergel)

\[K_0 \left(\text{add. (tensor) category generated by } B_{x_i} \text{'s, and closed under sums} \right) = \mathcal{H} \]

\[\text{and summands } \]

\[\text{indecomposable bimod. } B_x \leftrightarrow H_x \]

\[S^x \leftrightarrow H_x \]

Q: Is there a commutative version for N^p?

Connections to DT? Fukaya?

Noncommutative: $A = \text{End}_S \left(\bigoplus_{x \in W} B_x \otimes_S S/m \right)$
Known A-modules: $(q, gl_n), BGG$

$A = \text{End}^\bullet \left(\bigoplus \text{(simple perverse sheaves on } GL(n, \mathbb{C})/B) \right)$

Theorem (KL, Serngel)

$K_0(A\text{-gmod.}) \xrightarrow{\sim} \mathcal{H}$ as a \mathcal{H}-module

indee. proj. object $\longleftrightarrow \Pi_x$

Verma modules $\longleftrightarrow s_i \Pi_x$

simple objects \longleftrightarrow dual KL Π_x^* basis

Question: Can we understand arbitrary \mathcal{H}-modules?

- How to describe irreducible modules?

(KL defined integral version (cell modules) of irreducible modules)

Say $y \leq x$ if B_y occurs as a summand in $F B_x$

where $F =$ product of $B_{s_i} \text{'s}$

$x \sim y \iff x \leq y, y \leq x$

$\mathcal{H}_{\leq x}$ = Span $\left\{ \Pi_y \mid y \leq x \right\}$

Given $x \sim x, \mathcal{H}_{\leq x}$ is simple \mathcal{H}-module

Theorem (Mazorchuk, S.)

Take $x \in \mathcal{W}$. Take Serre subcategory generated by $L(y), y \leq x$ and quotient by Serre subcat. gen. by $L(y), y < x$
Remark: Resulting category doesn't depend on choice of x.

- Using 2-category theory:
 - Again, simple modules have KL-bases/dual KL-bases
 - corresponding to proj./simple

Explicit description of these categories?
- Known: (Khovanov–L., and, BK, BS) equivalent to blocks of cycl. Hecke algebra

- Special case: Simple modules labelled by partitions with 2-rows

Observation: $\text{GK dim} \leftrightarrow \text{Lusztig's function} \leftrightarrow \text{dimension of a Springer fibre}$

Example: ❁ irred. representation appears as a submod.
in N^p, where $\omega = S_2 \times S_2 \subset S_4$

Consider the Springer fibre attached to nilpotent $\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$

$$\left(\begin{array}{cc} \ast & \ast \\ 0 & 0 \end{array} \right)^2$$

$$\begin{array}{l}
\{ (x, \omega) \mid x \in \mathbb{C} \} \\
\{ F_1 \leq \ldots \leq F_n \} \times F_\omega \subseteq F_{i-1} \end{array}$$

$$\pi \downarrow \quad \pi^{-1}(x)$$

$$\mathcal{W} = \{ \text{nilpotent elements in } \mathfrak{g} \} \ni x$$

Springer fibre has components: $\pi^{-1}(x) = \mathbb{P}^2 \times \mathbb{P}^2 \cap \text{Hirze surface}$

$$x^{-1}(F_i)$$

$categorification$ of irred. modules $= H$-mod, where

$$H = \bigoplus_{(\mathfrak{g}_i, \mathfrak{g}_j)} H^*(\mathfrak{g}_i \cap \mathfrak{g}_j)$$

with a convolution product/Flarc homology product
Simplctic Khovanov homology

Solution of original problem:

Interpret gen. Verma's as standard objects in a category with

\[K_0 = \mathcal{W}(\omega) \otimes \mathfrak{g}(\omega_p) \text{ ind. modules} \]

(joint with Mazorchuk.)

(rough structure of generalized Verma modules)