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Introduction
[ ]

Outline

m joint with Bertrand Teen
m Study the geometry of the moduli of:
o [Bat connections, or
o local systems
on a smooth non-propet{k, chak O 0, with a view
towards
o Constructing (shifted) Poisson structures, and
o Describing their symplectic leaves.
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Motivation

X - compact oriented topological surface,
G - a complex reductive group.

Classical story: Fock-Rosly, Goldman, Guruprasad-Rajan,
Guruprasad-Huebschmann-Je!rey-Weinstein, ...

m The moduliMgpXqof! :"1pX,xq, G has an algebraic
Poisson structure;

m The symplectic leaves MgpXqare moduli spaces of
with bxed monodromy at inPnity.

Goal: Extend these statements to higher dimensional smooth
varietiesX.

Tony Pantev University of Pennsylvania
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Main results (i)

Fix a beldk of chak O 0

Theorem: [P-Teen| Let X be ad-dimensional smooth corI\-
plex algebraic variety and I& be a reductive algebraic gropp
overk. Then

(1) The derived moduli stadkocgspXqof G-local systems on
X has a naturaf « 2dgshifted Poisson structure.
(2) This shifted Poisson structure admits generalized

symplectic leaves. Among those are the derived modquili
of G local systems with Pxed monodromy at inPnity.
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Main results (ii)

Comments:

m Whend O 1 the Poisson structure ifl) specializes to
GoldmanOs Poisson structure on the moduli of
representation$ pX,xq, G.

m (2) is tricky: need to understand how to bx local
monodromies in the derived setting. Subtle issues:

e can not be seen otyLocs pX gand involves higher
homotopy coherences;

¢ an additional constraint strictness - has to be imposed
on the local monodromies at inPnity.

Tony Pantev University of Pennsylvania
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Main results (iii)

Theorem: [P-Teen] LetX be ad-dimensional smooth algebralc
variety overk. Then

(1) The derived moduli stack VettpX g of Rat vector bundles of
X has a natural2 « 2dgshifted Poisson structure.

(2) There is a well debPned derived stack of 3at bundles
Vect @Xqon the formal boundary oK. The shifted
Poisson structure ofl) is realized as a Lagrangian structufe
on the restriction mapR : Vect pXq, Vect @Xq

(3) The Pber ofR over a Rat vector bundle oBX is a derived
algebraic space locally of Pnite presentation.

Tony Pantev University of Pennsylvania
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Main results (iv)

Comments:

m The formal boundar$3X should encode the punctured
formal neighborhood of the boundary divisor in a good
compactipcatiorX ! X.

= Rigid analytic and non-commutative models B4 have
been considered i®en-Bassat-Temkin|, [EPmov],
[Hennion-Porta-Vezzosi] . Upshot: BX has a well

debned sheaf theory and a well dePned stacki®égfof
perfect complexes.

Tony Pantev University of Pennsylvania
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Main results (v)
Comments:

m The bulk of the work goes into constructing a derived
stack Perf pBX g of perfect complexes equipped with Rat
connections o®X (studied in depth ifRaskin] for
X O Ab).

m The stacks VectpXgand Vect @ X qgare not algebraic
but are formally representable at beld valued points. This
is crucial for debning symplectic, Lagrangian, and Poissor
structures.

m The existence of the Lagrangian structure on
R : Vect pXq, Vect @Xqboils down to Poincare
duality for compactly supported cohomology relative to
various derived base schemes.

Tony Pantev University of Pennsylvania

Betti/de Rham moduli



Betti moduli
000

Stacks of local systems

Moduli of local systems (i)

X - Pnite CW complex;
G - an alne reductive group ovek.

Main object of study: The moduli stack.ocspXq of

Tony Pantev University of Pennsylvania
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Stacks of local systems

Moduli of local systems (i)

X - Pnite CW complex;
G - an alne reductive group ovek.

Main object of study: The moduli stack.ocspXq of
G-local systems oX

—

locally constant princip
G-bundles orX
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Stacks of local systems

Moduli of local systems (i)
X - Pnite CW complex;
G - an alne reductive group ovek.

Main object of study: The moduli stack.ocspXq of
G-local systems oiX

Tony Pantev University of Pennsylvania
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Stacks of local systems

Moduli of local systems (ii)
Properties:
m Lo pXqis a derived Artin stack ovér.
m toLogspXgdepends only on the fundamental groupXof

It is the moduli stack of representations"qfX, xqginto
G, ie.
toLocspXq OM gpXq O IRep' 19X, xqa{Gs
HereRgp' 1pX, Xqqis the character scheme of X: the
alne k-scheme representing the functor
Rsp'1pX,Xqg:  commalg 'Sets
A ————"Homy,, ' 19X, xq GpAqq

Tony Pantev University of Pennsylvania
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Stacks of local systems

Moduli of local systems (iii)
Properties:

m The stackM gpXq OtgLogspXghas a course moduli
space which is the alne GIT quotient

MspXq ORspXafG,
and . {
O coni lasses bf: " 1pX, xq G
.. conjugacy ¢ - 1PAL XY,
MepXarkq O with imp greductive

«. 4]
5 Iso classes of locally consta@kq
bundles orX

m In general the derived structure bocg;pXq|depends
on the full homotopy type oX.

U7

Tony Pantev
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Symplectic and Lagrangian structures

Shifted symplectic structures

Recall: [PTVV]

m If F is derived Artin locally f.p. ovérwe have a
complex of closed 2-forms A2%pgFqonF.

= WhenF O RSpe#, then A2 g=q corresponds to the
module tot pFPpAQIpsq

m An n-cocycle# in the complexA?“pFqis aclosed
n-shifted 2-form.

m # is ann-shifted symplectic structure if the
contraction#° : Tg,f Lg with the induced element in
H"pF, A 2Lg OH"pA 2% gFqqis a quasi-iso.

Tony Pantev University of Pennsylvania
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Symplectic and Lagrangian structures

Relative structures

Letf : F, F!be a morphism between derived Artin stacks
overk, then
m An pn « lgshiftedisotropic structure onf is a pair
p#, hg where# is ann-shifted symplectic structure da,
andh is a homotopy betweeif'p#gand 0 inside the
complexA 2 pFqg
m An isotropic structurg¥, hqis Lagrangian if moreover
the canonical induced morphidm: T; y Lern« 1sis a
quasi-isomorphism.
Note: An m « lgshifted Lagrangian structure on
f :F, Sped is simply arpn « 1gshifted symplectic
structure onF.

Tony Pantev University of Pennsylvania
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Structures |on LogpX(q (i)

pX, BX Q- compact oriented topological manifold of didrd
G - a reductive algebraic group ouer

Theorem:

(@) [PTVV] If BX O! , then the derived stackocgpX ghas a
2 « dgshifted symplectic structure which is canonical up fo
a choice of a non-degenerate elementpyn? g- o

(b) [Calaque] The restriction mapLocspXq!, LocspBX(
carries a canonicgl? « dgshifted Lagrangian structure for
the 3« d O 2« pd « 1gshifted symplectic structure on the
target.

Tony Pantev University of Pennsylvania
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Symplectic and Lagrangian structures

Structures on LogspXq (ii)

Note: WhenX is a Riemann surface with boundary we
recover the symplectic structures on modulGelocal systems
on X with prescribed monodromies at inPnity (usually
constructed by quasi-Hamiltonian reduction).

University of Pennsylvania
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Symplectic and Lagrangian structures

Structures on LogspXq (ii)

Example: SupposgX, BXqis an oriented surface with
boundary. Then
m BX is a disjgint union of oriented circles, and so
LogpBXq E~ rG{GswhererG{Gs denotes the stack
quotient of the conjugation action @ on itself.
m The stackLog;pS'q O 1IG{Gs carries a canonical
1-shifted symplectic structure.
m For any$ PG, the inclusion of the conjugacy class
O, ! G of $ gives a canonical Lagrangian structure on
the mapBG E rO, {Gssr G{Gs

University of Pennsylvania
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Symplectic and Lagrangian structures

Structures on LogspXq (iii)

Assigning elements PG to each boundary component Xf
we get two 0-shifted Lagrangian morphisms

|
- BG, LocspX g

By [PTVV] the Pber product of these two maps has a
canonical 0-shifted symplectic structure. This Pber prods
the derived stack

LocpX,t$uq

of G-local systems oX whose local monodromies at inPnity
are belong to the conjugacy clas$€s u.

Tony Pantev University of Pennsylvania

Betti/de Rham moduli



Betti moduli
@0000

Poisson structures

Shifted Poisson structures (i)
Recall: [CPTVV]
m For F a derived Artin stack{, can form the dg Lie
algebra ofn-shifted polyvector pelds
", Symppler«n« 1sqon ™ 1s

m An n-shifted Poisson structure onF is a morphism in
the 8 -category of graded dg-Lie algebras

p:kr«ls@q', "pF,Symppler«n« 1sqgn” 1s

wherekr« 1sf2qis the graded dg Lie algebra whiclkis
placed in homological degree 1 and grading degree 2,
equipped with the zero Lie bracket.

Tony Pantev University of Pennsylvania
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Poisson structures

Shifted Poisson structures (ii)

Remark: [Melani-Safronov,Costello-Rozenblyum,Nuiten]
Shifted Poisson structures can always be described in wrms
shifted symplectic groupoids (Weinstein program).

Tony Pantev University of Pennsylvania
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Poisson structures

Shifted Poisson structures (ii)

Theorem: [Costello-Rozenblyum] If F is a derived Arti
stack the space af-shifted Poisson structure dn is weakl
equivalent to the space of equivalence classes-sififted
Lagrangian mapBE ,, F!to formal derived stacks™.

Note: rF, FlsarF, F2sifthere exists am-shifted

Lagrangian magF ,, G and a commutative diagram 4
|a
F &G
%}/Ofb
F2
with a and b formally etale and compatible with the Lagrangian
structures.

Tony Pantev University of Pennsylvania
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Poisson structures

Shifted Poisson structures (iii)

Example: For a compact oriented-dimensional manifol
with boundaryBX, the restriction map

LocpXq ', LogpBXq

is LagrangianCalaque] and so can be viewed as a
2 « dgshifted| Poisson structure  ohocspX g

Tony Pantev University of Pennsylvania
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Poisson structures

Simplectic leaves (i)

Classically a Poisson structure on a smooth variety induces
foliation of the variety by symplectic leaves.

For ann-shifted Poisson structure on a derived st&clgiven

by a Lagrangian map: F, F? the symplectic leaves are the
appropriately interpreted pbers faf

Debnition: A generalized symplectic leaf of F is a derive
stack of the formF 0 g1 # for any n-shifted Lagrangian mof-
phism #, F?!

Note: By [PTVV| a generalized symplectic leaf carries a
canonicaln-shifted symplectic structure.

Tony Pantev University of Pennsylvania
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Poisson structures

Simplectic leaves (ii)

Example: X - a compact oriented surface with boundary.
The restriction map

LogpXq", LogpBXqO rG{Gs

carries a O-shifted Lagrangian structure and thus corredgpo
to a O-shifted Poisson structure o pX g

LogspX, t$;uqg- the derived moduli stack @-local systems
on X with bxed monodromies at inPnity - is a generalized
symplectic leaf inLocspX g

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Betti spaces - theorems (i)

The boundary of a topological space Y is the
pro-homotopy typeBY :O Kli'n?( pY « Kq PProplg

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Betti spaces - theorems (i)

The boundary of a topological space Y is the
pro-homotopy typeBY :O Kli'n?( pY « Kq PProplg

[

taken in the8 -categoryT of homotopy types
and over the opposite category of compdct
subsetK ! 'Y

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Betti spaces - theorems (i)

The boundary of a topological space Y is the
pro-homotopy typeBY :O Kli'n?( pY « Kq PProplg

Note: The pro-objectBY is in general not constant and can
be extremely complicated. HowevekKifO ZpCqfor a smooth
n-dimensional complex algebraic variétywe have:

Proposition: The pro-objectBX is equivalent to a constaft
pro-object inT which has the homotopy type of a compfct
oriented topological manifold of dimensiam« 1.

Remark: BX has the homotopy type of the biundary of the
simple real oriented blowup of a good compactibcatiaf of
along its normal crossing boundary.

Tony Pantev University of Pennsylvania
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Betti spaces - theorems (ii)

SupposeX O ZpCqfor a smoothn-dimensional complex
algebraic variety , then

Claim: The canonical maBX ", X induces a restrictioh
morphism of derived locally f.p. Artin stacks

r:LogpXq', LocpBXqg

which is equipped with a canonig@k 2ngshifted Lagrangiah
structure with respect to the canonical shifted symplesttiac-
ture onLogspBXq

In particularr can be viewed as g « 2ngshifted Poissof
structure onLoc;pX g

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Symplectic leaves - smooth D (i)
AssumeZ aglrgjts a smooth compactibcatiah! Z with
DOZ«ZO ;D; asmooth divisor. Then
m BX O& (oriented circle bundle ové@®) classibed by
elements% ! H?pD;, Zg % O ciNp,(zG
m Given$; PG with centralizerZ;, the groupS! acts on
Bz (via $;) and naturally orG{Gs so that the
Lagrangian structure on the m&y; ,,r G{Gsis
Sl-equivariant.
m Twisting by% gives a 1-shifted Lagrangian morphism

1) . Bz, . f&{Gs

of locally constant families of derived Artin stacks d¥er

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Symplectic leaves - smooth D (ii)

Passing to global sections giveg moduli stagks:
LocspBXd OMappBX,BGq O" D, f{Gs ;
«

|_OCZi i[I)i g o" D, i ﬁZi

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Symplectic leaves - smooth D (ii)

Passing to global sections giveg moduli stagks:
LocspBXd OMappBX,BGq O" D, f{Gs ;
«

|_OCZi iﬂ:)i g o" D, i ﬁZi

G local systems on th
component BX of BX
mapping tpD;

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Symplectic leaves - smooth D (ii)

Passing to global sections giveg moduli stagks:
LocspBXd OMappBX,BGq O" D, f{Gs ;
«

|_OCZi iﬂ:)i g o" D, i ﬁZi

Z; local systems onD,
twisted by%

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Symplectic leaves - smooth D (ii)

Passing to global sections giveg moduli stagks:
LocspBXd OMappBX,BGq O" D, f{Gs ;
«

|_OCZi iﬂ:)i g o" D, i ﬁZi

SinceD; is a compact topological manifold endowed with a
canonical orientation the map;j induces gi3 « 2ngshifted
Lagrangian morphism of derived Artin stacks

r:Log, - iq', LocpBXq

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Symplectic leaves - smooth D (iii)

Combining all; we get a3 « 2ngshifted Lagrangian
morphism
rO r: Log.- g LogspBXq OLogpBXg
By the Lagrangian intersection theoremi'VVV| the Pber
product of derived stacks
+ u

LogpX,t$uq:0 Log, - pDiq LogspXq

i LocgpBXq

has a canonicg « 2ngshifted symplectic structure.

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Symplectic leaves - smooth D (iv)

By construction

m Lo pX, t$uqis the derived stack db-local systems on
X whose local monodromy aroubByl is bPxed to be in the
conjugacy clas®,, of $;.

m The natural map

LocspX,t$iug ', LocpXq

realized ocs pX, t $;ugas ajgeneralized symplectic leaf
of the @2 « 2ngshifted Poisson structure drogpXg

This proves par{2) of the Main theorem in the Betti setting.

Tony Pantev University of Pennsylvania
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Structures on Betti spaces

Symplectic leaves - two components (i)

AssumeD O Z« Z O D, Y D, has two smooth irreducible
components meeting transversally at a smddth Then

. (
BX E B X BX.
B2 X

whereB X is an oriented circle bundle ov@f O D; « Dy,
andB;,X is an orienteds! 6 S'-bundle oveD;s.

Note: EachBX has the homotopy type of an oriented
compact manifold of dimensiom2 1 with boundary
canonically equivalent tB;,X.

Tony Pantev University of Pennsylvania
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Symplectic leaves - two components (ii)

Theorem: [P-Teen]

() For a commuting pair of elementd 1,! ,q PG 6 G the map

LocgpBiX,! 1q LocgpBX,! 2q !, LocgpBXq 6 LocgpBioX, t! 1,! ouq
LocgpB1oXq

comes equipped with a natural Lagrangian structure.

(i) If moreover the paip 1,! 2q is then the derived
Artin stack

LocspX, t! 1,1 ouq

comes equipped with a naturgR « 2ngshifted symplectic
structure which is a symplectic leaf &iocspX g

University of Pennsylvania
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Stacks of Rat bundles

Perfect complexes with Bat connections (i)

SupposeX is a smooth variety ovdy, and letXpr be the de
Rham functor ofX, i.e. the (discrete, underived) stack

Xpr : cdgg’ ——'Sets! SSets
A !X Fﬁpeq)o‘redqq

The derived stack of perfect complexes with Rat
connections on X is by debnition

Perf pXq OMapyg, PXor, Perfg

Tony Pantev University of Pennsylvania
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Stacks of Rat bundles

Perfect complexes with Rat connections (ii)

If X is not proper PerfpXqis not representable. However,
sinceX is a Pnite colimit of alnek-schemes and PérfXqis
a mapping stack one checks that the stack Pgfighas good
inPnitesimal properties:

Proposition: Let X be a smooth algebraic variety oker
m The derived moduli stack PéniX qis
nil-complete and inPnitesimally cartesian .

m Perf pXghas a cotangent complex which is perfect &t
all peld valued points.

Tony Pantev University of Pennsylvania
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Stacks of Rat bundles

The formal boundary (i)
Let X # X be a gooq compactibcatioX is smooth and
proper ovek, andD O X « X is a simple normal crossings
divisor. For an etale map: SpeA, X set
| O the ideal ofu®D ! Sped;
R O lim, A{I™;
Rp - the formal completion oX alongD;
and debne derived stacks g qand PerfBX gwhose

points over a derived alne schen®O RSpegBgare

« %]
Perf Xp pSqO lim PerfpSpecAb Bq
Spec A, X

PerfBXqsq O  lim  PerfoSpecAb B « Vpqq
Spec A, X

Tony Pantev University of Pennsylvania
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Stacks of Rat bundles

The formal boundary (ii)

Proposition: [BeTe],[Ef],[HePoVe] The k-linear dg cate

gory of global points Pel®X qikqis independent of the choige
of a good compactibcatiod ! X.

Note: The proof relies on the rigid tubular descenfBéTe]
which only works for smooth varieties. It is unknown if
PerfdX qi8qis independent ok for a general alne derived
schemeS (even for a singular alne schents).

University of Pennsylvania
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Stacks of Rat bundles

The formal boundary (iii)

Remedy: Work with extendable perfect complexes.

Consider
PerfBXq ! PerfdXq
debned as the Karoubian image of the map edtacks

PerfiRpq, PerfiBXq

Proposition: [EPmov,P-Teen]

(a) For anyS PdA$, the dg category PeffX qiBq of
extendable perfect complexes is independent of the
choice ofX I X.

(b) The derived stack PerflBX qis independent oX.

Tony Pantev University of Pennsylvania
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Stacks of Rat bundles

The formal boundary (iv)

For an etale map : SpecA, X and an alne derived
schemeS O RSped set

| O the ideal ofu®D ! SpedA;
BRzpAg O lim, DRpA{I" b Bgas aB-linear mixed cdga;
BR; PAg - BRs pAg with the local equation ob inverted.

DebPnition:

(a) Perf BXqBqis the dg category of sheaves of graded mied
DRE pPAgdg modules which are locally free of weight zero.

(b) The derived pre-stack Perf®* X qis the bber product
Perf BXq O pertpax q e X G

Tony Pantev University of Pennsylvania
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The formal boundary (v)

Proposition:

(a) The derived pre-stacks PerfBXqand Pert ®*@BX qare
stacks.

(b) The derived stack Petf®*pBX gis independent oK.

(c) The restriction mapR : Perf' pXq, Perf pBXqis a map of
derived stacks which factors through Perf*®X g

(d) Perf @Xqis nil-complete, inf-cartesian, and has a cotang@nt
complex which is perfect over all beld valued points.
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Poisson structures

Theorem:

(i) The morphismR : Perf' pXq, Perf @Xq-carries a natural
R « 2ngshifted isotropic structure.

(i) The isotropic structure in(i) is Lagrangian over all peld
valued points.

Tony Pantev University of Pennsylvania

Betti/de Rham moduli



Odds and ends
[ ele}

Derived stacks of local systems

Derived moduli of local systems (i)

The derived stack o& local systems can be viewed as an
8 -functor

LogspXq: cdgg® ——'SSets
A ‘MappSpX ¢ BGpAqq
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Derived stacks of local systems

Derived moduli of local systems (i)

The derived stack o& local systems can be viewed as an
8 -functor

LogspXq: cdgg® ——'SSets
A ‘MappSpX ¢ BGpAqq

singular simplices
in X
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Derived stacks of local systems

Derived moduli of local systems (i)

The derived stack o& local systems can be viewed as an
8 -functor

LogspXq: cdgg® ——'SSets
A ‘MappSpX ¢ BGpAqq

simplicial set of
A-points ofBG
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Derived stacks of local systems

Derived moduli of local systems (i)

The derived stack o& local systems can be viewed as an
8 -functor

LogspXq: cdgg® ——'SSets
A ‘MappSpX ¢ BGpAqq

Note: LocspXqgadmits a nice quotient presentation.
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Derived stacks of local systems

Derived moduli of local systems (ii)

Choose j - a free simlicial model of the loop group%q of
loops based at P X.
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Derived stacks of local systems

Derived moduli of local systems (ii)

Choose j - a free simlicial model of the loop group%q of
loops based at P X.

Note: B"j4 is a simplicial free resolution of the pointed
homotpy typepX, xq
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Derived stacks of local systems

Derived moduli of local systems (ii)

Choose j - a free simlicial model of the loop group%q of
loops based at P X.

Then:
m Rgp'aqis a cosimplicial alnek-scheme;
m "Rsp a0 Ogis a commuttative simplicid-algebra.

Passing to normalized chains give& @pXq Pcdga, © which
up to quasi-isomorphism is independent of the choice of the
resolution ;.
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Derived moduli of local systems (iii)

The conjugation action o6 on Rg' 5q gives an action o6 on
the cdgaAspXgand hence on the derived alne scheme
RSpe®@ spXg The quotient stack

LogspXq O rRSpe® ¢ pX g{Gs

is thederived stack of G-local systems on X.

Backl
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Orientations and structures

Orientations and structures (i)

Key observation: Lagrangian structures on a map between
moduli of local systems exist always in the presence oivielat
orientations.
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Orientations and structures

Orientations and structures (i)

f .Y, X -acontinuous map between pPnite CW complexes;
C3pY, Xq- the cone of the pull-back maC3pXq, C2pYq
on singular cochains with coelcients I

An orientation of dimension d on f is a morphism of
complexes orC3pY ,Xq", krl« ds which is
non-degenerate in the sense that the pairing

C®pXgb C3pX,Yq", krl«ds

given by the composition of or with the cup product©@pXq
is non-degenerate on cohomology and induces a
quasi-isomorphisr@2pY , Xq E C3pX ¢ rl « ds
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Orientations and structures

Orientations and structures (ii)

f .Y, X -continuous map of CW complexes equipped with
a relative orientation of dimensiah
G - a reductive algebraic group over

Theorem: [Calaque,Brav-Dyckerho!] The pullback ma||
on the derived stacks of local systems

fO: LogpXq", LospY(q

carries gR« dgshifted Lagrangian structure which is canonjcal
up to a choice of a non-degenerate element in“pymaf.

| Back
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Poisson bivectors

Poisson bivectors
For aG-local system PLocgpXgwe have

u TLopoXq# O Hépx; adﬂ qqis
m the bivectorp underlying thg®2 « dgshifted Poisson
structure onLocspXqis given by

K e;,.!_!i_ ' pH3pX, adp qgfis b H3pX, adp qgisqd « 2s
'!li"'—’;-!_'> &

iii"”"*ii;.
%044
H23pX , adp qgils b H3pX, BX; adp qqd « 2s

Backl
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Obstructions

Obstructions - smooth D (i)

Caution: The derived stackogc, -, Diqmay be empty.
Indeed:

m Log, - pDiqikqis the groupoid oG-local systems oB X
whose local monodromy aroubl is conjugate tdb;.

m A Zi{ZZglocal system o; determines a class in
H2pD;, ZZ;qq which is the obstruction to lifting it to a
Z;-local system.

m For Log, -, Diqikgto be non-empty one needs to have a
Z{ZpZ¢local system om; whose obstruction class
matches with the image éf under the map
H?m;, Zq , H*M;, Zpziqqgiven by$; : Z , ZpZig
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Obstructions

Obstructions - smooth D (ii)

Example: If G is semisimplek is algebraically closed, afxl
is a regular semi-simple element, th&ns a maximal torus in
G and hence the image 66 in H?pD;, Z;qis zero. If$; is of
inbPnte order, this force® to be a torsion class iH?D;, Zqg

Backl
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Obstructions

Obstructions - two components (i)

Debnition: A pair of commuting elemeni,, $,9 PG 06 G
is calledstrict if the morphism

BZ1, ", v Z1{Z1S Oicocics Z2{Z28

is Lagrangian (for its canonical isotropic structure).

HereGUG! GO G is the commuting variety, and,, is the
centralizer of the paipb,, $,q9

Note: Strictness is a group theoretic property.
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Obstructions

Obstructions - two components (ii)

Proposition: Let g1, $,q be a commuting pair of elemerfts
in G, andu :O Id « ad,qandv :O Id « adsb,q be the)
corresponding endormorphismsgofThen the pairg,, $.qis
strict if and onlyu is strict with respect to the kernel of i.e.

if and only if

IMPY) kerpuqdl O IMpvg X kerpug

Note: Stricness is symmetric by debnition so equivalently
b1, $.qis strict if and only ifv is strict with respect to the

kernel ofu.

University of Pennsylvania
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Obstructions

Obstructions - two components (iii)

Corollary:
m If at least one of thé; is semi-simple then the pair
P51, $,qis strict.
m If pu, vgform a principal nilpotent pailGinzburg], then
the pairpby, $,qis strict.

Caution: Strictness is a non-trivial condition: $fis any
non-trivial unipotent element i@, then the pairgb, $qis not
strict. In this caseau is a non-zero nilpotent endomorphism of
g and thus kepug XImpug & 0, but 1M erpuqd O0q

Back|
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Inbnitesimal theory

InPnitesimal properties (i)

Note: These are the properties neeeded for applying the
Artin-Lurie representability theorem.

Recall that for any8 P cdga °, any connectiv8-moduleM,
and anyk-linear derivatiord : B ,, Mrls the square zero
extensiorB O4 M of B by M is debned by the cartesian
square of cdga:

BOsM ——'B
b
BT!B O Mrls

where 0 denotes the natural inclusionBofis a direct factor in
the trivial square zero extensi@O Mris
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Inbnitesimal theory

InPnitesimal properties (ii)
Depbnition: Let F be a derived stack.

m We say thatF isinPnitesimally cartesian if for anyB,
M andd as above the square

FpB Oy Mg——'FBq
|- o
FpBq——'FpB O Mrisq

is cartesian.

= We say thatF is nil-completeif for anyB P cdga ° with
Postnikov towet B- ,u, the natural morphism
FBq', lim, FpB- ,qis an equivalence.

»,
BYs af
Tony Pantev University of Pennsylvania

Betti/de Rham moduli



