NOTETAKER CHECKLIST FORM
(Complete one for each talk.)

Name: Michael McNulty Email/Phone: mcnulty@math.ucr.edu/6099821991

Speaker's Name: Xuwen Zhu

Talk Title: Ps.d.05 lecture 1

Date: 9/3/19 Time: 9:30 am/ pm (circle one)

Please summarize the lecture in 5 or fewer sentences: This lecture introduced the notion of a pseudodifferential operator. It also described classical Kohn-Nirenberg symbols, quantization, and adjoints.

CHECK LIST
(This is NOT optional, we will not pay for incomplete forms)

☑ Introduce yourself to the speaker prior to the talk. Tell them that you will be the note taker, and that you will need to make copies of their notes and materials, if any.

☑ Obtain ALL presentation materials from speaker. This can be done before the talk is to begin or after the talk; please make arrangements with the speaker as to when you can do this. You may scan and send materials as a .pdf to yourself using the scanner on the 3rd floor.
 • **Computer Presentations:** Obtain a copy of their presentation
 • **Overhead:** Obtain a copy or use the originals and scan them
 • **Blackboard:** Take blackboard notes in black or blue PEN. We will NOT accept notes in pencil or in colored ink other than black or blue.
 • **Handouts:** Obtain copies of and scan all handouts

☑ For each talk, all materials must be saved in a single .pdf and named according to the naming convention on the "Materials Received" check list. To do this, compile all materials for a specific talk into one stack with this completed sheet on top and insert face up into the tray on the top of the scanner. Proceed to scan and email the file to yourself. Do this for the materials from each talk.

☑ When you have emailed all files to yourself, please save and re-name each file according to the naming convention listed below the talk title on the "Materials Received" check list.
(YYYY.MM.DD.TIME.SpeakerLastName)

☑ Email the re-named files to notes@msri.org with the workshop name and your name in the subject line.
MSRI LECTURES ON PSEUDODIFFERENTIAL OPERATORS

XUWEN ZHU

ABSTRACT. Rough notes for lectures at the MSRI introductory workshop in Fall 2019.

A large part of these notes is a shortened version of lecture notes by Richard Melrose, available at http://math.mit.edu/~rbm/im190c2.ps.

1. PROLOGUE: WHY STUDY PSEUDODIFFERENTIAL OPERATORS?

In these two lectures we will mostly study pseudodifferential operators on \mathbb{R}^n. They do also work beautifully well on manifolds.

A very basic example of a pseudodifferential operator is the L^2 inverse to the shifted Laplacian

$$P = \Delta + 1, \quad \Delta := -\sum_{j=1}^{n} \partial_{x_j}^2.$$

This inverse is a Fourier multiplier (here \mathcal{S} denotes Schwartz functions):

$$P^{-1} = Q : \mathcal{S}(\mathbb{R}^n) \rightarrow \mathcal{S}(\mathbb{R}^n), \quad \hat{Q}u(\xi) = \frac{1}{1 + |\xi|^2} \hat{u}(\xi).$$

Now, imagine that we instead have a variable coefficient operator, e.g.

$$-\sum_{j,k} p_{jk}(x) \partial_{x_j} \partial_{x_k},$$

where p_{jk} is a positive definite matrix depending on x. What would the inverse be? At the end of this lectures we construct an approximate inverse which is a pseudodifferential operator. This was the original motivation for studying pseudodifferential operators in the theory of PDE.

Pseudodifferential operators are a general class of operators which include differential operators, Fourier multipliers like Q above, approximate inverses to elliptic differential operators, and a lot more.
2. Special quantization formula

To get the formula for a general pseudodifferential operator, we first look at a differential operator of order m

$$A = \sum_{|\alpha| \leq m} a_\alpha(x) D_x^\alpha, \quad a_\alpha \in C^\infty(\mathbb{R}^n),$$

where we henceforth adopt the notation

$$D_x^\alpha = D_{x_1}^{\alpha_1} \cdots D_{x_n}^{\alpha_n}, \quad D_{x_j} = \frac{1}{i} \partial_{x_j}.$$

Take $u \in \mathcal{S}(\mathbb{R}^n)$ and write by the Fourier inversion formula.

$$u(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{ix \cdot \xi} \hat{u}(\xi) \, d\xi.$$

Now let's differentiate under the integral sign to obtain

$$D_x^\alpha u(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i x \cdot \xi} \xi^\alpha \hat{u}(\xi) \, d\xi.$$

From here we get

$$Au(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i x \cdot \xi} a(x, \xi) \hat{u}(\xi) \, d\xi \quad (1)$$

where $a(x, \xi)$ is the symbol of the operator:

$$a(x, \xi) = \sum_{|\alpha| \leq m} a_\alpha(x) \xi^\alpha. \quad (2)$$

To obtain a pseudodifferential operator, we simply take a more general function $a(x, \xi)$ in (1), one which is not necessarily a polynomial in the ξ variables. The corresponding operator A is called the quantization of a, and we write

$$A = \text{Op}_0(a).$$

Here Op_0 stands for quantization for y-independent symbols (as opposed to general symbols defined later). Note that the Fourier multiplier Q defined above can now be written as

$$Q = \text{Op}_0 \left(\frac{1}{1 + |\xi|^2} \right).$$

To get good properties of $\text{Op}_0(a)$ we need to make certain assumption on the behavior of a at infinity. This brings us to symbol classes.
3. Classical Kohn–Nirenberg Symbols

We use the notation
\[\langle \xi \rangle := \sqrt{1 + |\xi|^2}. \]
This is asymptotic to $|\xi|$ as $\xi \to \infty$ and is also smooth at $\xi = 0$.

Definition 3.1. Let $m \in \mathbb{R}$. We say $a(z, \xi) \in C^\infty(\mathbb{R}^p \times \mathbb{R}^n)$ lies in the symbol class $S^m(\mathbb{R}^p; \mathbb{R}^n)$, if for all multiindices α, β

\[|\partial_x^\alpha \partial_\xi^\beta a(z, \xi)| \leq C_{\alpha\beta} \langle \xi \rangle^{-|\alpha - \beta|} \]

Here we allow $p \neq n$ for future use, but in the original formula (1) we have $p = n$.

The derivative bounds above mean the following: $a = O(\langle \xi \rangle^m)$, differentiation in z does not change the growth of a, but differentiation in ξ gives decay by a power of ξ. As an exercise, you can check that:

- a polynomial of the form (2) lies in $S^m(\mathbb{R}^n; \mathbb{R}^n)$ if we assume that all derivatives of a_α lie in L^∞, and
- the symbol of the operator Q above, $a(x, \xi) = (\xi)^{-2}$, lies in $S^{-2}(\mathbb{R}^n; \mathbb{R}^n)$.

4. General Quantization Formula

And the Power of Integration by Parts

We now return to the formula (1). Let $a \in S^m(\mathbb{R}^n; \mathbb{R}^n)$. Recalling the definition of the Fourier transform, we rewrite (1) as

\[Au(x) = (2\pi)^{-n} \int_{\mathbb{R}^{2n}} e^{i(x-y) \cdot \xi} a(x, \xi) u(y) \, dy \, d\xi; \quad u \in \mathcal{S}(\mathbb{R}^n). \]

(This only makes sense for $m < -n$, more on that later.)

We arrive to the general quantization formula by allowing a to also depend on y. (This will be useful in deriving properties of quantization.) Namely, for $a \in S^m(\mathbb{R}^{2n}; \mathbb{R}^n)$ we define

\[\text{Op}(a) u(x) = (2\pi)^{-n} \int_{\mathbb{R}^{2n}} e^{i(x-y) \cdot \xi} a(x, y, \xi) u(y) \, dy \, d\xi. \] \hfill (3)

For $m < -n$, the integral in (3) converges and we get

\[a \in S^m(\mathbb{R}^{2n}; \mathbb{R}^n), \ m < -n \implies \text{Op}(a) : \mathcal{S}(\mathbb{R}^n) \to L^\infty(\mathbb{R}^n). \] \hfill (4)

We now make sense of the oscillatory integral (3) for general a (in particular, for a which is a polynomial of the form (2)), by integrating by parts in y. Let's just do it
one time. We write
\[\text{Op}(a)u(x) = (2\pi)^{-\nu} \int_{\mathbb{R}^{2n}} (e^{i(x-y)\cdot \xi}(\xi)^{2}(\xi)^{-2}a(x,y,\xi)u(y)) \, dyd\xi \]
\[= (2\pi)^{-\nu} \int_{\mathbb{R}^{2n}} ((1 - \xi \cdot D_{y})e^{i(x-y)\cdot \xi}(\xi)^{-2}a(x,y,\xi)u(y)) \, dyd\xi \]
\[= (2\pi)^{-\nu} \int_{\mathbb{R}^{2n}} e^{i(x-y)\cdot \xi}(1 + \xi \cdot D_{y})(\xi)^{-2}a(x,y,\xi)u(y)) \, dyd\xi. \]
(5)

The integration by parts in the third line above does make sense for \(a \in S^{m} \) and \(m < -\nu \). However, in the last line we compute
\[(1 + \xi \cdot D_{y})(\xi)^{-2}a(x,y,\xi)u(y)) = O((\xi)^{m-1}(y)^{-\nu}) \]
so the last integral actually converges when \(m < 1 - \nu \), which is better than the original definition of quantization! We can now integrate by parts repeatedly to arrive to
\[a \in S^{m}(\mathbb{R}^{2n}, \mathbb{R}^{n}), \text{ any } m \implies \text{Op}(a) : \mathcal{S}(\mathbb{R}^{n}) \to L^{\infty}(\mathbb{R}^{n}). \] (6)

Some caution is needed here: what we really mean is that the linear operation \(\text{Op}(a) \) is extended to the symbol class \(S^{m} \) by continuity from, say, \(S^{m-1} \). Such an extension is necessarily unique, and we can prove identities for \(a \in S^{m} \) by just proving them for rapidly decaying \(a \) and arguing by approximation. (There are some subtleties here regarding "approximating by nice symbols").

We can upgrade (6) further as follows:
\[a \in S^{m}(\mathbb{R}^{2n}, \mathbb{R}^{n}), \text{ any } m \implies \text{Op}(a) : \mathcal{S}(\mathbb{R}^{n}) \to \mathcal{S}(\mathbb{R}^{n}). \] (7)

For that we need to apply the operators \(x_{j}, D_{x_{j}} \) to \(\text{Op}(a) \) and use the identities
\[x_{j}\text{Op}(a) = \text{Op}(a)x_{j} - \text{Op}(D_{x_{j}}a), \]
\[D_{x_{j}}\text{Op}(a) = \text{Op}(a)D_{x_{j}} + \text{Op}(D_{x_{j}}a + D_{y_{j}}a) \]
the first of which is proved by integrating by parts in \(\xi_{j} \) and the second one, by integrating by parts in \(y_{j} \). We show the first one in a bit more detail since it will be used again later:
\[(x_{j}\text{Op}(a) - \text{Op}(a)x_{j})u(x) = (2\pi)^{-\nu} \int_{\mathbb{R}^{2n}} e^{i(x-y)\cdot \xi}(x_{j} - y_{j})a(x,y,\xi)u(y) \, dyd\xi \]
\[= (2\pi)^{-\nu} \int_{\mathbb{R}^{2n}} (D_{x_{j}}e^{i(x-y)\cdot \xi})a(x,y,\xi)u(y) \, dyd\xi \]
\[= -(2\pi)^{-\nu} \int_{\mathbb{R}^{2n}} e^{i(x-y)\cdot \xi}D_{x_{j}}a(x,y,\xi)u(y) \, dyd\xi. \] (8)
Since \(D_{x_{j}}a, D_{x_{j}}a, D_{y_{j}}a \) still lie in \(S^{m} \), we see that \(x_{j}\text{Op}(a), D_{x_{j}}\text{Op}(a) : \mathcal{S}(\mathbb{R}^{n}) \to L^{\infty}(\mathbb{R}^{n}) \), and iteration gives \(x^\alpha D_{x}^\beta \text{Op}(a) : \mathcal{S}(\mathbb{R}^{n}) \to L^{\infty}(\mathbb{R}^{n}) \), which implies (7).

The above discussion leads to the following statement:
Proposition 4.1. Assume that $a \in S^m(\mathbb{R}^{2n}; \mathbb{R}^n)$. Then we may define

$$\text{Op}(a) : \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n), \quad \text{Op}(a) : \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n).$$

Here the additional powers of x, y are handled similarly to the previous argument. To get the mapping property on tempered distributions, we use a definition by duality:

$$\langle \text{Op}(a)u, \varphi \rangle_{L^2} := \langle u, \text{Op}(a)^* \varphi \rangle_{L^2}, \quad u \in \mathcal{S}'(\mathbb{R}^n), \quad \varphi \in \mathcal{S}(\mathbb{R}^n)$$

where the adjoint $\text{Op}(a)^*$ has the form (3) with a different symbol (see below) and thus maps $\mathcal{S}(\mathbb{R}^n)$ to itself.

We call the resulting class of operators $\text{Op}(a)$ pseudodifferential operators. In particular, we denote by

$$\Psi^m(\mathbb{R}^n)$$

operators of the form $\text{Op}(a)$ where $a \in S^m(\mathbb{R}^{2n}; \mathbb{R}^n)$.

Define the residual operator class

$$\Psi^{-\infty}(\mathbb{R}^n) := \bigcap_{m \in \mathbb{R}} \Psi^m(\mathbb{R}^n).$$

One can show (with a bit of annoying technical work) that every element of $\Psi^{-\infty}$ has the form $\text{Op}(a)$ where a lies in the residual symbol class

$$S^{-\infty}(\mathbb{R}^{2n}; \mathbb{R}^n) := \bigcap_{m} S^m(\mathbb{R}^{2n}; \mathbb{R}^n).$$

Note that $a \in S^{-\infty}$ simply means that each derivative of a decays like $O((|\xi|^{-\infty})$. Then the integral kernel of (3) converges with all the x, y derivatives, implying that every $A \in \Psi^{-\infty}$ is a smoothing operator:

$$Au(x) = \int K(x, y)u(y) \, dy \quad \text{where} \quad K(x, y) \in C^\infty(\mathbb{R}^{2n}).$$

In particular we have the mapping property $A : \mathcal{S}' \to C^\infty(\mathbb{R}^n)$.

5. Reduction to y-independent symbols

We now show that the general quantization procedure Op from (3) actually gives the same class of operators as the special quantization procedure Op_0 from (1), and get a useful asymptotic expansion:

Theorem 1. Assume that $a \in S^m(\mathbb{R}^{2n}; \mathbb{R}^n)$. Then there exists $\bar{a} \in S^m(\mathbb{R}^n; \mathbb{R}^n)$ such that

$$\text{Op}(a) = \text{Op}_0(\bar{a}).$$

Moreover, we have the asymptotic expansion

$$\bar{a}(x, \xi) \sim \sum_{k=0}^{\infty} \bar{a}_k, \quad \bar{a}_k := \frac{1}{k!} (-i \partial_y \cdot \partial_\xi)^k a(x, y, \xi)|_{y=x}, \quad \partial_y \cdot \partial_\xi := \sum_{j=1}^{n} \partial_{y_j} \partial_{\xi_j}$$

(9)
in the following sense: for each N,

$$\tilde{a}(x, \xi) - \sum_{k=0}^{N-1} \tilde{a}_k \in S^{m-N}(\mathbb{R}^n; \mathbb{R}^n).$$

Note here that the expansion does make sense: the k-th term in the expansion is in S^{m-k} due to the fact that Kohn–Nirenberg symbols improve by a power of ξ when differentiated in ξ. (This is the first time we use this fact, actually.) Note also that the above is an asymptotic expansion, not a convergent series! Asymptotic expansions like the one above are very common in microlocal analysis.

We will not prove Theorem 1 (see Melrose’s notes for a proof). We instead prove a simpler statement (from which the full theorem follows, but after a good amount of annoying technical work):

Proposition 5.1. For each N we may write

$$\text{Op}(a) = \text{Op}_0 \left(\sum_{k=0}^{N-1} \tilde{a}_k \right) + \text{Op}(r_N), \quad r_N \in S^{m-N}(\mathbb{R}^{2n}; \mathbb{R}^n)$$

where \tilde{a}_k are the terms in the expansion (9).

Proof. We just show the cases $N = 1, N = 2$, with higher N obtained similarly. We first do $N = 1$. The symbol

$$a(x, y, \xi) - \tilde{a}_0(x, \xi) = a(x, y, \xi) - a(x, x, \xi)$$

vanishes on the partial diagonal $\{x = y\}$. We can then write

$$a(x, y, \xi) - \tilde{a}_0(x, \xi) = \int_0^1 \partial_t (a(x, x + t(y - x), \xi)) \, dt = \sum_{j=1}^n (y_j - x_j) b_j(x, y, \xi),$$

(10)

$$b_j(x, y, \xi) = \int_0^1 (\partial_{y_j} a)(x, x + t(y - x), \xi) \, dt.$$

From the definition of b_j we see that $b_j \in S^m(\mathbb{R}^{2n}; \mathbb{R}^n)$. We now use the key identity proved by (8):

$$b \in S^m(\mathbb{R}^{2n}; \mathbb{R}^n) \quad \Rightarrow \quad \text{Op}((y_j - x_j)b) = \text{Op}(D_{\xi_j}b).$$

(11)

We get then

$$\text{Op}(a) - \text{Op}_0(\tilde{a}_0) = \text{Op}(r_1), \quad r_1(x, y, \xi) := \sum_{j=1}^n D_{\xi_j} b_j(x, y, \xi)$$

and r_1 does lie in $S^{m-1}(\mathbb{R}^{2n}; \mathbb{R}^n)$ owing to the differentiation in ξ.

To do $N = 2$, we iterate this process further, applying it now to the symbol r_1. We see that the next term in the expansion should be the restriction of r_1 to $\{x = y\}$;
indeed, \(r_1(x,y,\xi) - r_1(x,x,\xi) \) can be again written in the form (10). It is easy to compute that
\[
r_1(x,x,\xi) = -i(\partial_y \cdot \partial_\xi)a(x,y,\xi)|_{y=x} = \tilde{a}_1(x,\xi).
\]
So we get
\[
\text{Op}(a) - \text{Op}_0(\tilde{a}_0 + \tilde{a}_1) = \text{Op}(r_2), \quad r_2 \in S^{m-2}(\mathbb{R}^{2n};\mathbb{R}^n).
\]
\[\square\]

For \(A = \text{Op}(a) \in \Psi^m(\mathbb{R}^n) \), where \(a \in S^m(\mathbb{R}^{2n};\mathbb{R}^n) \), we define the principal symbol \(\sigma^m(A) \) as follows:
\[
\sigma^m(A) = [a(x,x,\xi)] \in \frac{S^m(\mathbb{R}^n,\mathbb{R}^n)}{S^{m-1}(\mathbb{R}^n,\mathbb{R}^n)}.
\] \hspace{1cm} (12)

The principal symbol will have nice algebraic properties as we will see soon. What we see immediately from Proposition 5.1 is the following statement: if \(A \in \Psi^m(\mathbb{R}^n) \), then
\[
\sigma^m(A) = 0 \iff A \in \Psi^{m-1}(\mathbb{R}^n).
\]
So the principal symbol does determine \(A \) modulo a lower order term. One often suppresses the order of the operator in the notation, writing \(\sigma \) instead of \(\sigma^m \).

6. ADJOINTS

We now discuss algebraic properties of the classes \(\Psi^m(\mathbb{R}^n) \). One algebraic property that we can do easily is closure under adjoints:

Theorem 2. Assume that \(A \in \Psi^m(\mathbb{R}^n) \). Then \(A^* \in \Psi^m(\mathbb{R}^n) \) and \(\sigma(A^*) = \overline{\sigma(A)} \). Here the adjoint is understood in the following sense:
\[
\langle Au, v \rangle_{L^2} = \langle u, A^*v \rangle_{L^2} \quad \text{for all} \quad u, v \in \mathcal{S}(\mathbb{R}^n).
\]

Proof. Let \(A = \text{Op}(a) \) where \(a \in S^m(\mathbb{R}^{2n};\mathbb{R}^n) \). Then we have the following representation of the adjoint:
\[
\text{Op}(a)^*u(x) = (2\pi)^{-n} \int_{\mathbb{R}^{2n}} e^{i(x-y)\cdot \xi} \overline{a(y,x,\xi)} u(y) dy d\xi.
\]
From here the result follows immediately since \(\text{Op}(a)^* = \text{Op}(a^*) \) where \(a^*(x,y,\xi) = \overline{a(y,x,\xi)} \).
\[\square\]